

HXSS2GT64280CE-25E

200-Pin Small Outline DDR2 SDRAM Modules EU RoHS Compliant

Data Sheet

Rev. A

Revision History:		
Date	Revision	Subjects (major changes since last revision)
2016/03/01	A	Initial Release

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?

Your feedback will help us to continuously improve the quality of this document.

Please send your proposal (including a reference to this document) to:

info@unisemicon.com

1 Overview

This chapter gives an overview of the 200-pin Small-Outline DDR2 SDRAM modules product family and describes its main characteristics.

1.1 Features

- 200-Pin PC2-6400 DDR2 SDRAM memory modules.
- Dual rank 256M x 64 module organization, and 16pcs 128M x 8 chip organization.
- 2GB Modules built with 1 Gbit DDR2 SDRAMs in chipsize packages PG-TFBGA-60.
- Standard Double-Data-Rate-Two Synchronous DRAMs (DDR2 SDRAM) with a single + 1.8 V (± 0.1 V) power supply.
- All speed grades faster than DDR2-800 comply with DDR2-800 timing specifications.
- Programmable CAS Latencies (3, 4, 5, 6 and 7), Burst Length (8 & 4).
- Auto Refresh (CBR) and Self Refresh.

- Auto Refresh for temperatures above 85 °C t_{REFI} = 3.9 μ s.
- · Programmable self refresh rate via EMRS2 setting.
- · Programmable partial array refresh via EMRS2 settings.
- · DCC enabling via EMRS2 setting.
- All inputs and outputs SSTL_1.8 compatible.
- Off-Chip Driver Impedance Adjustment (OCD) and On-Die Termination (ODT).
- Serial Presence Detect with E²PROM.
- SO-DIMM Dimensions (nominal): 30 mm high, 67.6 mm wide
- · Based on standard reference layouts

					TABLE 1
					Performance Table
UniIC Speed Code			-25E	Unit	Note
DRAM Speed Grade		DDR2	-800		
Module Speed Grade		PC2	-6400		
CAS-RCD-RP latencies		·	6-6-6	t _{CK}	
Max. Clock Frequency	CL3	f_{CK3}	200	MHz	
	CL4	f_{CK4}	266	MHz	
	CL5	f_{CK5}	333	MHz	
	CL6	$f_{\sf CK6}$	400	MHz	
Min. RAS-CAS-Delay		t_{RCD}	15	ns	
Min. Row Precharge Time		$t_{\sf RP}$	15	ns	
Min. Row Active Time		t _{RAS}	45	ns	
Min. Row Cycle Time		t_{RC}	60	ns	

1.2 Description

The UniIC HXSS2GT64280CE–25E module family are Small-Outline DIMM modules "SO-DIMMs" with 30 mm height based on DDR2 technology. DIMMs are available as non-ECC modules in 256M \times 64 (2GB) in organization and density, intended for mounting into 200-pin connector sockets.

The memory array is designed with 1 Gbit Double-Data-Rate-Two (DDR2) Synchronous DRAMs. Decoupling capacitors are mounted on the PCB board. The DIMMs feature serial presence detect based on a serial E²PROM device using the 2-pin I²C protocol. The first 128 bytes are programmed with configuration data and are write protected; the second 128 bytes are available to the customer.

			TABLE 2 Ordering Information
Product Type ¹⁾	Compliance Code ²⁾	Description	SDRAM Technology
PC2-6400 (6-6-6)			
HXSS2GT64280CE-25E	2GB 2R×8 PC2-6400S-666	2 Ranks, Non-ECC	1Gbit (×8)

1) For detailed information regarding Product Type of UniIC please see chapter "Product Type Nomenclature" of this data sheet.

²⁾ The Compliance Code is printed on the module label and describes the speed grade, for example "PC2–6400S–666" where 6400S means Small-Outline DIMM modules with 6.40 GB/sec Module Bandwidth 6400 and "555" means Column Address Strobe (CAS) latency=6, Row Column Delay (RCD) latency = 6 and Row Precharge (RP) latency = 6.

					TABLE 3 Address Format
DIMM Density	Module Organization	Memory Ranks	ECC/ Non-ECC	# of SDRAMs	# of row/bank/column bits
2GB	256M × 64	2	Non-ECC	16	14/3/10

		TABLE 4 Components on Modules
DRAM Components ¹⁾	DRAM Density	DRAM Organization
SCB18T1G800AF-25D	1Gbit	128M × 8

¹⁾ Green Product

²⁾ For a detailed description of all functionalities of the DRAM components on these modules see the component data sheet.

2 Pin Configurations

2.1 Pin Configurations

The pin configuration of the Small Outline DDR2 SDRAM DIMM is listed by function in **Table 5** (200 pins). The abbreviations used in columns Pin Type and Buffer Type are explained in **Table 6** and **Table 7** respectively. The Pin numbering is depicted in **Figure 1**

				TABLE 5 Pin Configuration of SO-DIMM
Pin No.	Name	Pin Type	Buffer Type	Function
Clock Signals	'		•	
30	CK0	1	SSTL	Clock Signals 1:0, Complement Clock Signals 1:0
164	CK1	I	SSTL	The system clock inputs. All address and command lines
32	bCK0	I	SSTL	are sampled on the cross point of the rising edge of CK and the falling edge of bCK. A Delay Locked Loop (DLL) circuit
166	bCK1	I	SSTL	is driven from the clock inputs and output timing for read operations is synchronized to the input clock.
79	CKE0	I	SSTL	Clock Enable Rank 1:0
80	CKE1	I	SSTL	Activates the DDR2 SDRAM CK signal when HIGH and deactivates the CK signal when LOW. By deactivating the clocks, CKE LOW initiates the Power Down Mode or the Self Refresh Mode. Note: 2 Ranks module
	NC	NC	_	Not Connected
				Note: 1-rank module
Control Signals				
110	bS0	I	SSTL	Chip Select Rank 1:0
115	bS1	I	SSTL	Enables the associated DDR2 SDRAM command decoder when LOW and disables the command decoder when HIGH. When the command decoder is disabled, new commands are ignored but previous operations continue. Rank 0 is selected by bS0; Rank 1 is selected by bS1. Ranks are also called "Physical banks".2 Ranks module
	NC	NC	_	Not Connected
				Note: 1-rank module
108	bRAS	I	SSTL	Row Address Strobe When sampled at the cross point of the rising edge of CK, and falling edge of bCK, bRAS, bCAS and bWE define the operation to be executed by the SDRAM.
113	bCAS	I	SSTL	Column Address Strobe

		Pin Type	Buffer Type	Function
109	bWE	I	SSTL	Write Enable
Address Signals				
107	BA0	I	SSTL	Bank Address Bus 2:0
106	BA1	I	SSTL	Selects which DDR2 SDRAM internal bank of four or eight is activated.
85	BA2	I	SSTL	Bank Address Bus 2 Greater than 512Mb DDR2 SDRAMS
	NC	NC	SSTL	Less than 1Gb DDR2 SDRAMS
102	A0	I	SSTL	Address Bus 12:0
101	A1	I	SSTL	During a Bank Activate command cycle, defines the row
100	A2	I	SSTL	address when sampled at the cross-point of the rising edge of CK and falling edge of bCK. During a Read or Write
99	A3	l	SSTL	command cycle, defines the column address when sampled
98	A4	l	SSTL	at the cross point of the rising edge of CK and falling edge
97	A5	l	SSTL	of bCK. In addition to the column address, AP is used to
94	A6	I	SSTL	invoke autoprecharge operation at the end of the burst read or write cycle. If AP is HIGH, autoprecharge is selected and
92	A7	I	SSTL	BA0-BAn defines the bank to be precharged. If AP is LOW,
93	A8	I	SSTL	autoprecharge is disabled. During a Precharge command
91	A9	I	SSTL	cycle, AP is used in conjunction with BA0-BAn to control which bank(s) to precharge. If AP is HIGH, all banks will be
105	A10	I	SSTL	precharged regardless of the state of BA0-BAn inputs. If AP
	AP	I		is LOW, then BA0-BAn are used to define which bank to
90	A11	I	SSTL	precharge.
89	A12	I	SSTL	Address Signal 12 Note: Module based on 256 Mbit or larger dies
116	A13	ı	SSTL	Address Signal 13
110	AIS	'	SSIL	Note: 1 Gbit based module
-	NC	NC		Not Connected
	NO	110		Note: Module based on 512 Mbit or smaller dies
86	A14	I	SSTL	Address Signal 14
			33.2	Note: 2 Gbit based module
	NC	NC	_	Not Connected
				Note: Module based on 1 Gbit or smaller dies
Data Signals			1	1
5	DQ0	I/O	SSTL	Data Bus 63:0
7	DQ1	I/O	SSTL	Note: Data Input / Output pins
17	DQ2	I/O	SSTL	1
19	DQ3	I/O	SSTL	1
4	DQ4	I/O	SSTL	1
6	DQ5	I/O	SSTL	1
14	DQ6	I/O	SSTL	1
16	DQ7	I/O	SSTL	1
23	DQ8	I/O	SSTL	1

Pin No.	Name	Pin Type	Buffer Type	Function
25	DQ9	I/O	SSTL	Data Bus 63:0
35	DQ10	I/O	SSTL	Note: Data Input / Output pins
37	DQ11	I/O	SSTL	
20	DQ12	I/O	SSTL	
22	DQ13	I/O	SSTL	
36	DQ14	I/O	SSTL	
38	DQ15	I/O	SSTL	
43	DQ16	I/O	SSTL	
45	DQ17	I/O	SSTL	
55	DQ18	I/O	SSTL	
57	DQ19	I/O	SSTL	
44	DQ20	I/O	SSTL	
46	DQ21	I/O	SSTL	
56	DQ22	I/O	SSTL	
58	DQ23	I/O	SSTL	
61	DQ24	I/O	SSTL	
63	DQ25	I/O	SSTL	
73	DQ26	I/O	SSTL	
75	DQ27	I/O	SSTL	
62	DQ28	I/O	SSTL	
64	DQ29	I/O	SSTL	
74	DQ30	I/O	SSTL	
76	DQ31	I/O	SSTL	
123	DQ32	I/O	SSTL	
125	DQ33	I/O	SSTL	
135	DQ34	I/O	SSTL	
137	DQ35	I/O	SSTL	
124	DQ36	I/O	SSTL	
126	DQ37	I/O	SSTL	
134	DQ38	I/O	SSTL	
136	DQ39	I/O	SSTL	
141	DQ40	I/O	SSTL	
143	DQ41	I/O	SSTL	
151	DQ42	I/O	SSTL	
153	DQ43	I/O	SSTL	
140	DQ44	I/O	SSTL	
142	DQ45	I/O	SSTL	
152	DQ46	I/O	SSTL	
154	DQ47	I/O	SSTL	
157	DQ48	I/O	SSTL	

Pin No.	Name	Pin Type	Buffer Type	Function
159	DQ49	I/O	SSTL	Data Bus 63:0
173	DQ50	I/O	SSTL	Note: Data Input / Output pins
175	DQ51	I/O	SSTL	
158	DQ52	I/O	SSTL	
160	DQ53	I/O	SSTL	
174	DQ54	I/O	SSTL	
176	DQ55	I/O	SSTL	
179	DQ56	I/O	SSTL	
181	DQ57	I/O	SSTL	
189	DQ58	I/O	SSTL	
191	DQ59	I/O	SSTL	
180	DQ60	I/O	SSTL	
182	DQ61	I/O	SSTL	
192	DQ62	I/O	SSTL	
194	DQ63	I/O	SSTL	
Data Strobe Signals				
13	DQS0	I/O	SSTL	Data Strobe Bus 7:0 and Complementary Data Strobe
11	bDQS0	I/O	SSTL	Bus 7:0
31	DQS1	I/O	SSTL	The data strobes, associated with one data byte, sourced with data transfers. In Write mode, the data strobe is
29	bDQS1	I/O	SSTL	sourced by the controller and is centered in the data
51	DQS2	I/O	SSTL	window. In Read mode the data strobe is sourced by the DDR2 SDRAM and is sent at the leading edge of the data
49	bDQS2	I/O	SSTL	
70	DQS3	I/O	SSTL	window. bDQS signals are complements, and timing is relative to the cross-point of respective DQS and bDQS. If
68	bDQS3	I/O	SSTL	the module is to be operated in single ended strobe mode,
131	DQS4	I/O	SSTL	all bDQS signals must be tied on the system board to $V_{\rm SS}$
129	bDQS4	I/O	SSTL	and DDR2 SDRAM mode registers programmed appropriately.
148	DQS5	I/O	SSTL	арргорпатегу.
146	bDQS5	I/O	SSTL	
169	DQS6	I/O	SSTL	
167	bDQS6	I/O	SSTL	
188	DQS7	I/O	SSTL	
186	bDQS7	I/O	SSTL	
Data Mask Signals				
10	DM0	I	SSTL	Data Mask Bus 7:0
26	DM1	I	SSTL	The data write masks, associated with one data byte. In
52	DM2	I	SSTL	Write mode, DM operates as a byte mask by allowing input data to be written if it is LOW but blocks the write operation
67	DM3	I	SSTL	if it is HIGH. In Read mode, DM lines have no effect.
130	DM4	I	SSTL	1
147	DM5	I	SSTL	
170	DM6	I	SSTL	

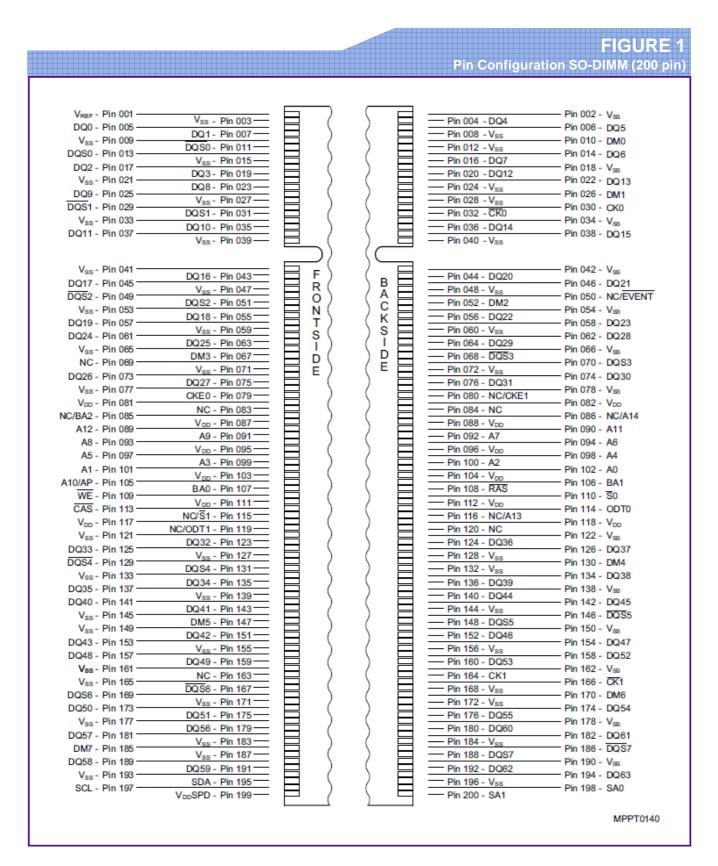

Pin No.	Name	Pin Type	Buffer Type	Function
185	DM7	I	SSTL	Data Mask Bus 7:0
EEPROM				
197	SCL	I	CMOS	Serial Bus Clock This signal is used to clock data into and out of the SPD EEPROM and Thermal sensor.
195	SDA	I/O	OD	Serial Bus Data This is a bidirectional pin use to transfer data into and out of the SPD EEPROM and Thermal sensor. A resistor must be connected from SDA to $V_{\rm DDSPD}$ on the motherboard to act as a pull-up.
198	SA0	I	CMOS	Serial Address Select Bus 1:0
200	SA1	I	CMOS	Address pins used to select the SPD and Thermal sensor base address.
50	bEVENT	0	OD	EVENT The optional EVENT pin is reserved for use to flag critical module temperature and is used in conjunction with Thermal Sensor.
	NC	-	-	Not Connected Not connected on modules without temperature sensors.
Power Supplies				
1	V_{REF}	AI	_	I/O Reference Voltage Reference voltage for the SSTL-18 inputs.
199	V_{DDSPD}	PWR	_	EEPROM Power Supply Power supplies for Serial Presence Detect, Thermal Sensor and ground for the module.
81,82,87,88,95,96,103,104, 111,112,117,118	V_{DD}	PWR	_	Power Supply Power supplies for core, I/O and ground for the module.
2,3,8,9,12,15,18,21,24,27,28, 33,34,39,40,41,42,47,48,53, 54,59,60,65,66,71,72,77,78, 121,122,127,128,132,133,138,13 9,144,145,149,150,155,156, 161,162,165,168, 171,172,177, 178,183,184,187,190,193,196	$V_{ m SS}$	GND	_	Ground Plane Power supplies for core, I/O, Serial Presence Detect, Thermal Sensor and ground for the module.
Other pins				
114	ODT0	I	SSTL	On-Die Termination Control 1:0
119	ODT1	I	SSTL	On-Die Termination Control 1 Asserts on-die termination for DQ, DM, DQS, and bDQS signals if enabled via the DDR2 SDRAM mode register. <i>Note: 2 Rank modules</i>
	NC	NC	_	Not Connected Note: 1 Rank modules
69,83,84,120,163	NC	NC	_	Not connected Pins not connected on UniIC SO-DIMMs

	TABLE 6 Abbreviations for pin Type
Abbreviation	Description
I	Standard input-only pin. Digital levels.
0	Output. Digital levels.
I/O	I/O is a bidirectional input/output signal.
Al	Input. Analog levels.
PWR	Power
GND	Ground
NC	Not Connected

	TABLE 7 Abbreviations for Buffer Type
Abbreviation	Description
SSTL	Serial Stub Terminated Logic (SSTL_18)
LV-CMOS	Low Voltage CMOS
CMOS	CMOS Levels
OD	Open Drain. The corresponding pin has 2 operational states, active low and tri-state, and allows multiple devices to share as a wire-OR.

3 Electrical Characteristics

This chapter contains speed grade definition, AC timing parameter and ODT tables.

3.1 Absolute Maximum Ratings

Attention: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

			Absolu		TABLE 8
Symbol	Parameter	Rating		Unit	Note
		Min.	Max.		
V_{DD}	Voltage on $V_{\rm DD}$ pin relative to $V_{\rm SS}$	-1.0	+2.3	V	1)
V_{DDQ}	Voltage on $V_{\rm DDQ}$ pin relative to $V_{\rm SS}$	-0.5	+2.3	V	
V_{DDL}	Voltage on V_{DDL} pin relative to V_{SS}	-0.5	+2.3	V	
V_{IN},V_{OUT}	Voltage on any pin relative to $V_{\rm SS}$	-0.5	+2.3	V	

¹⁾ When $V_{\rm DD}$ and $V_{\rm DDQ}$ and $V_{\rm DDL}$ are less than 500 mV; $V_{\rm REF}$ may be equal to or less than 300 mV.

			Envi	ronmental	TABLE 9 Requirements
Parameter	Symbol	Values		Unit	Note
		Min.	Max.		
Operating temperature (ambient)	T_{OPR}	0	+65	°C	
Storage Temperature	T_{STG}	- 50	+100	°C	1)
Barometric Pressure (operating & storage)	PBar	+69	+105	kPa	2)
Operating Humidity (relative)	H_{OPR}	10	90	%	
Storage Humidity (without condensation)	H_{STG}	5	95	%	

¹⁾ Storage Temperature is the case surface temperature on the center/top side of the DRAM.

²⁾ Up to 3000 m.

		DRA	M Compo	nent Operat		TABLE 10 rature Range
Symbol	Parameter		Rating		Unit	Note
			Min.	Max.		
T_{CASE}	Operating Temperature		0	95	°C	1)2)3)4)

- 1) Operating Temperature is the case surface temperature on the center / top side of the DRAM.
- 2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the DRAM case temperature must be maintained between 0~ 95 °C under all other specification parameters.
- 3) Above 85 °C the Auto-Refresh command interval has to be reduced to $t_{\rm REFI}$ = 3.9 μs
- 4) When operating this product in the 85 °C to 95 °C T_{CASE} temperature range, the High Temperature Self Refresh has to be enabled by setting EMR(2) bit A7 to "1". When the High Temperature Self Refresh is enabled there is an increase of I_{DD6} by approximately 50%

3.2 Operating Conditions

					TA	B = 11
Parameter	Symbol	Supply V	oltage Levels	and AC / DC Op	erating (Unit	Conditions Note
		Min.	Тур.	Max.		
Device Supply Voltage	V_{DD}	1.7	1.8	1.9	V	
Output Supply Voltage	V_{DDQ}	1.7	1.8	1.9	V	1)
Input Reference Voltage	V_{REF}	$0.49 imes V_{DDQ}$	$0.5 imes V_{DDQ}$	$0.51 imes V_{DDQ}$	V	2)
SPD Supply Voltage	V_{DDSPD}	1.7	_	3.6	V	
DC Input Logic High	$V_{IH(DC)}$	$V_{\sf REF}$ + 0.125	_	$V_{\rm DDQ} + 0.3$	V	
DC Input Logic Low	$V_{IL\;(DC)}$	- 0.30	_	V _{REF} – 0.125	V	
AC Input Logic High	$V_{IH(AC)}$	$V_{\sf REF}$ + 0.200	_	V_{DDQ} + V_{PEAK}	V	
AC Input Logic Low	$V_{IL\;(AC)}$	$V_{\rm SSQ} - {\sf V}_{\sf PEAK}$	_	V _{REF} -0.200	V	
In / Output Leakage Current	I_{L}	- 5	_	5	μΑ	3)

- 1) Under all conditions, $V_{\rm DDQ}$ must be less than or equal to $V_{\rm DD}$
- 2) Peak to peak AC noise on $V_{\rm REF}$ may not exceed ± 2% $V_{\rm REF}$ (DC). $V_{\rm REF}$ is also expected to track noise in $V_{\rm DDQ}$.
- 3) Input voltage for any connector pin under test of 0 V \leq $V_{IN} \leq$ $V_{DDQ} +$ 0.3 V; all other pins at 0 V. Current is per pin

Speed Grade Definitions 3.3

						TABLE 12 Speed Grade Definition
Speed Grade			DDR2-8	00E	Unit	Note
UniIC Sort Nam	е		-25E			
CAS-RCD-RP la	ntencies		6-6-6	6-6-6		
Parameter		Symbol	Min.	Max.	_	
Clock Period	@ CL = 3	t_{CK}	5	8	ns	1)2)3)4)
	@ CL = 4	t _{CK}	3.75	8	ns	1)2)3)4)
	@ CL = 5	t _{CK}	3.0	8	ns	1)2)3)4)
	@ CL = 6	t _{CK}	2.5	8	ns	1)2)3)4)
Row Active Time t _{RAS}		45	70k	ns	1)2)3)4)5)	
Row Cycle Time t _{RC}		60	_	ns	1)2)3)4)	
RAS-CAS-Delay t_{RCD}		15	_	ns	1)2)3)4)	
Row Precharge Time t_{RP}		15	_	ns	1)2)3)4)	

¹⁾ Timings are guaranteed with CK/bCK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.

The CK/bCK input reference level (for timing reference to CK/bCK) is the point at which CK and bCK cross. The DQS /bDQS, RDQS / bRDQS, input reference level is the crosspoint when in differential strobe mode.

Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ

The output timing reference voltage level is VTT.

tRAS MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.

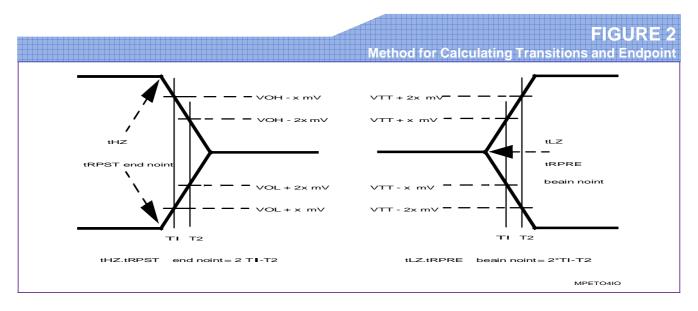
3.4 Component AC Timing Parameters

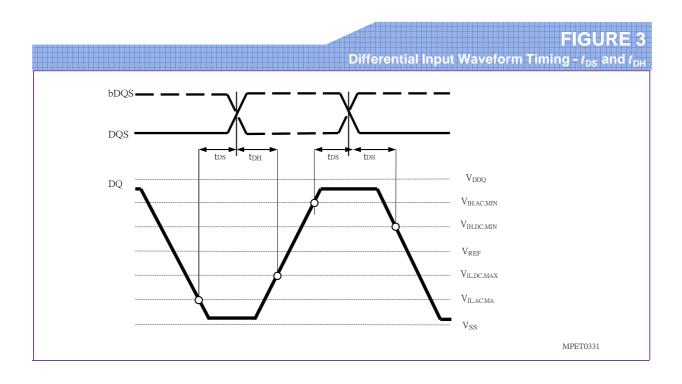
					TABLE 13
	DRA	M Compone	nt Timing	Parame	eter by Speed Grade - DDR2-800
Parameter	Symbol	DDR2-800		Unit	Note ¹⁾²⁾³
		Min.	Max.)4)5)6)7)
DQ output access time from CK / bCK	t _{AC}	-400	+400	ps	8)
bCAS to bCAS command delay	t_{CCD}	2	_	nCK	
Average clock high pulse width	$t_{CH.AVG}$	0.48	0.52	$t_{CK.AVG}$	9)10)
Average clock period	$t_{CK.AVG}$	2500	8000	ps	
CKE minimum pulse width (high and low pulse width)	t_{CKE}	3	_	nCK	11)
Average clock low pulse width	$t_{CL.AVG}$	0.48	0.52	$t_{CK.AVG}$	9)10)
Auto-Precharge write recovery + precharge time	t_{DAL}	$WR + t_{nRP}$	_	nCK	12)13)
Minimum time clocks remain ON after CKE asynchronously drops LOW	t_{DELAY}	$t_{\text{IS}} + t_{\text{CK .AVG}} + t_{\text{IH}}$	_	ns	
DQ and DM input hold time	t _{DH.BASE}	125		ps	14)18)19)
DQ and DM input pulse width for each input	t_{DIPW}	0.35	_	$t_{CK.AVG}$	
DQS input high pulse width	t_{DQSH}	0.35	_	t _{CK.AVG}	
DQS output access time from CK / bCK	t_{DQSCK}	-350	+350	ps	8)
DQS input low pulse width	t_{DQSL}	0.35	_	t _{CK.AVG}	
DQS-DQ skew for DQS & associated DQ signals	t_{DQSQ}	_	200	ps	15)
DQS latching rising transition to associated clock edges	t_{DQSS}	- 0.25	+ 0.25	t _{CK.AVG}	16)
DQ and DM input setup time	$t_{DS.BASE}$	50	_	ps	17)18)19)
DQS falling edge hold time from CK	t _{DSH}	0.2	_	t _{CK.AVG}	16)
DQS falling edge to CK setup time	t_{DSS}	0.2	_	t _{CK.AVG}	16)
Four Activate Window for 1KB page size products	$t_{\sf FAW}$	35	_	ns	34)
Four Activate Window for 2KB page size products	t _{FAW}	45	_	ns	34)
CK half pulse width	t_{HP}	$Min(t_{CH.ABS}, t_{CL.ABS})$	_	ps	20)
Data-out high-impedance time from CK / bCK	t_{HZ}	_	t _{AC.MAX}	ps	8)21)
Address and control input hold time	t _{IH.BASE}	250	_	ps	22)24)
Control & address input pulse width for each input	t_{IPW}	0.6	_	t _{CK.AVG}	
Address and control input setup time	t _{IS.BASE}	175	_	ps	23)24)

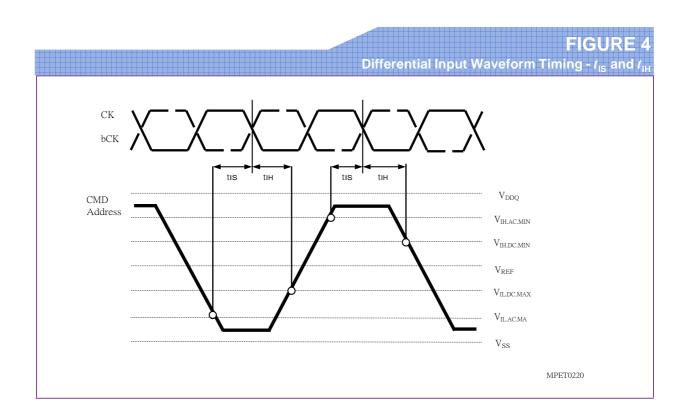
Parameter	Symbol	DDR2-800		Unit	Note ¹⁾²⁾³
		Min.	Max.)4)5)6)7)
DQ low impedance time from CK/bCK	$t_{LZ.DQ}$	$2 \times t_{AC.MIN}$	t _{AC.MAX}	ps	8)21)
DQS/DQS low-impedance time from CK / bCK	t _{LZ.DQS}	t _{AC.MIN}	t _{AC.MAX}	ps	8)21)
MRS command to ODT update delay	t_{MOD}	0	12	ns	34)
Mode register set command cycle time	t _{MRD}	2	_	nCK	
OCD drive mode output delay	t_{OIT}	0	12	ns	34)
DQ/DQS output hold time from DQS	t_{QH}	$t_{HP} - t_{QHS}$	_	ps	25)
DQ hold skew factor	t_{QHS}	_	300	ps	26)
Average periodic refresh Interval	t_{REFI}	_	7.8	μS	27)28)
		_	3.9	μS	27)29)
Auto-Refresh to Active/Auto-Refresh command period	t_{RFC}	127.5	_	ns	30)
Read preamble	t_{RPRE}	0.9	1.1	$t_{CK.AVG}$	31)32)
Read postamble	t_{RPST}	0.4	0.6	t _{CK.AVG}	31)33)
Active to active command period for 1KB page size products	t_{RRD}	7.5	_	ns	34)
Active to active command period for 2KB page size products	t_{RRD}	10	_	ns	34)
Internal Read to Precharge command delay	t_{RTP}	7.5	_	ns	34)
Write preamble	t_{WPRE}	0.35	_	$t_{CK.AVG}$	
Write postamble	t_{WPST}	0.4	0.6	$t_{CK.AVG}$	
Write recovery time	t_{WR}	15	_	ns	34)
Internal write to read command delay	t_{WTR}	7.5	_	ns	34)35)
Exit active power down to read command	t_{XARD}	2	_	nCK	
Exit active power down to read command (slow exit, lower power)	t _{XARDS}	8 – AL	_	nCK	
Exit precharge power-down to any command	t_{XP}	2	_	nCK	
Exit self-refresh to a non-read command	t_{XSNR}	t _{RFC} +10	_	ns	34)
Exit self-refresh to read command	t_{XSRD}	200	_	nCK	
Write command to DQS associated clock edges	WL	RL – 1	1	nCK	

¹⁾ $V_{\rm DDQ}$ = 1.8 V ± 0.1V; $V_{\rm DD}$ = 1.8 V ± 0.1 V. 2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue.

Timings are guaranteed with CK/ bCK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.


⁴⁾ The CK / bCK input reference level (for timing reference to CK / bCK) is the point at which CK and bCK cross. The DQS / bDQS, RDQS / b RDQS, input reference level is the crosspoint when in differential strobe mode.


- 5) Inputs are not recognized as valid until V_{REF} stabilizes. During the period before V_{REF} stabilizes, CKE = 0.2 x V_{DDQ} is recognized as low.
- 6) The output timing reference voltage level is $V_{\rm TT}$.
- 7) New units, ' $t_{\text{CK.AVG}}$ ' and 'nCK', are introduced in DDR2–667 and DDR2–800. Unit ' $t_{\text{CK.AVG}}$ ' represents the actual $t_{\text{CK.AVG}}$ of the input clock under operation. Unit 'nCK' represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and DDR2–533, ' t_{CK} ' is used for both concepts. Example: $t_{\text{XP}} = 2$ [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 Tm) is 2 x $t_{\text{CK.AVG}} + t_{\text{ERR.2PER(Min)}}$.
- 8) When the device is operated with input clock jitter, this parameter needs to be derated by the actual $t_{\text{ERR(6-10per)}}$ of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has $t_{\text{ERR(6-10PER)},\text{MIN}} = -272$ ps and $t_{\text{ERR(6-10PER)},\text{MAX}} = +293$ ps, then $t_{\text{DQSCK},\text{MIN}(\text{DERATED})} = t_{\text{DQSCK},\text{MIN}} t_{\text{ERR(6-10PER)},\text{MAX}} = -400$ ps -293 ps =-693 ps and $t_{\text{DQSCK},\text{MAX}(\text{DERATED})} = t_{\text{DQSCK},\text{MAX}} t_{\text{ERR(6-10PER)},\text{MIN}} = 400$ ps +272 ps =+672 ps. Similarly, $t_{\text{LZ},\text{DQ}}$ for DDR2–667 derates to $t_{\text{LZ},\text{DQ},\text{MIN}(\text{DERATED})} = -900$ ps -293 ps =-1193 ps and $t_{\text{LZ},\text{DQ},\text{MAX}(\text{DERATED})} = 450$ ps +272 ps =+722 ps. (Caution on the MIN/MAX usage!)
- 9) Input clock jitter spec parameter. The jitter specified is a random jitter meeting a Gaussian distribution.
- 10) These parameters are specified per their average values, however it is understood that the relationship between the average timing and the absolute instantaneous timing holds all the times.
- 11) $t_{\text{CKE.MIN}}$ of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of $t_{\text{IS}} + 2 \times t_{\text{CK}} + t_{\text{IH}}$.
- 12) DAL = WR + RU{ $t_{\rm RP}$ (ns) / $t_{\rm CK}$ (ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For $t_{\rm RP}$, if the result of the division is not already an integer, round up to the next highest integer. $t_{\rm CK}$ refers to the application clock period. Example: For DDR2–533 at $t_{\rm CK}$ = 3.75 ns with $t_{\rm WR}$ programmed to 4 clocks. $t_{\rm DAL}$ = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.
- 13) $t_{\text{DAL},\text{nCK}} = \text{WR [nCK]} + t_{\text{nRP},\text{nCK}} = \text{WR} + \text{RU}\{t_{\text{RP}} [\text{ps}] / t_{\text{CK},\text{AVG}} [\text{ps}] \}$, where WR is the value programmed in the EMR.
- 14) Input waveform timing $t_{\rm DH}$ with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to the input signal crossing at the $V_{\rm IL,DC}$ level for a falling signal and from the differential data strobe crosspoint to the input signal crossing at the $V_{\rm IL,DC}$ level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between $V_{\rm IL,DC,MAX}$ and $V_{\rm IH,DC,MIN}$. See **Figure 3**.
- 15) t_{DOSQ} : Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate mismatch between DQS / bDQS and associated DQ in any given cycle.
- 16) These parameters are measured from a data strobe signal ((L/U/R)DQS / bDQS) crossing to its respective clock signal (CK / bCK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. t_{JIT.PER}, t_{JIT.CC}, etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.
- 17) Input waveform timing $t_{\rm DS}$ with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the $V_{\rm IL,AC}$ level to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the $V_{\rm IL,AC}$ level to the differential data strobe crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between $V_{\rm il(DC)MAX}$ and $V_{\rm ih(DC)MIN}$. See Figure 3.
- 18) If $t_{\rm DS}$ or $t_{\rm DH}$ is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.
- 19) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal ((L/U/R)DQS / bDQS) crossing.
- 20) $t_{\rm HP}$ is the minimum of the absolute half period of the actual input clock. $t_{\rm HP}$ is an input parameter but not an input specification parameter. It is used in conjunction with $t_{\rm QHS}$ to derive the DRAM output timing $t_{\rm QH}$. The value to be used for $t_{\rm QH}$ calculation is determined by the following equation; $t_{\rm HP} = {\rm MIN}~(t_{\rm CH,ABS},~t_{\rm CL,ABS})$, where, $t_{\rm CH,ABS}$ is the minimum of the actual instantaneous clock high time; $t_{\rm CL,ABS}$ is the minimum of the actual instantaneous clock low time.
- 21) $t_{\rm HZ}$ and $t_{\rm LZ}$ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which specifies when the device output is no longer driving ($t_{\rm HZ}$), or begins driving ($t_{\rm LZ}$).
- 22) input waveform timing is referenced from the input signal crossing at the $V_{\rm IL.DC}$ level for a rising signal and $V_{\rm IH.DC}$ for a falling signal applied to the device under test. See **Figure 4**.
- 23) Input waveform timing is referenced from the input signal crossing at the $V_{\rm IH.AC}$ level for a rising signal and $V_{\rm IL.AC}$ for a falling signal applied to the device under test. See **Figure 4**.
- 24) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective clock signal (CK / bCK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. $t_{JIT.PER}$, $t_{JIT.CC}$, etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not.
- 25) t_{QH} = t_{HP} t_{QHS}, where: t_{HP} is the minimum of the absolute half period of the actual input clock; and t_{QHS} is the specification value under the max column. {The less half-pulse width distortion present, the larger the t_{QH} value is; and the larger the valid data eye will be.} Examples: 1) If the system provides t_{HP} of 1315 ps into a DDR2–667 SDRAM, the DRAM provides t_{QH} of 975 ps minimum. 2) If the system provides t_{HP} of 1420 ps into a DDR2–667 SDRAM, the DRAM provides t_{QH} of 1080 ps minimum.
- 26) t_{QHS} accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual t_{HP} at the input is transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation of the output drivers.



- 27) The Auto-Refresh command interval has be reduced to 3.9 μs when operating the DDR2 DRAM in a temperature range between 85 °C and 95 °C.
- 28) 0 °C $\leq T_{\text{CASE}} \leq$ 85 °C.
- 29) 85 °C < $T_{CASE} \le$ 95 °C.
- 30) A maximum of eight Refresh commands can be posted to any given DDR2 SDRAM, meaning that the maximum absolute interval between any Refresh command and the next Refresh command is 9 x t_{REFI}.
- 31) t_{RPST} end point and t_{RPRE} begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (t_{RPST}) , or begins driving (t_{RPRE}) . Figure 2 shows a method to calculate these points when the device is no longer driving (t_{RPST}) , or begins driving (t_{RPRE}) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent.
- 32) When the device is operated with input clock jitter, this parameter needs to be derated by the actual $t_{\text{JIT.PER.}}$ of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has $t_{\text{JIT.PER.MIN}} = -72$ ps and $t_{\text{JIT.PER.MAX}} = +93$ ps, then $t_{\text{RPRE.MIN}(\text{DERATED})} = t_{\text{RPRE.MIN}} + t_{\text{JIT.PER.MIN}} = 0.9 \times t_{\text{CK.AVG}} 72$ ps = +2178 ps and $t_{\text{RPRE.MAX}(\text{DERATED})} = t_{\text{RPRE.MAX}} + t_{\text{JIT.PER.MAX}} = 1.1 \times t_{\text{CK.AVG}} + 93$ ps = +2843 ps. (Caution on the MIN/MAX usage!).
- 33) When the device is operated with input clock jitter, this parameter needs to be derated by the actual $t_{\rm JIT.DUTY}$ of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has $t_{\rm JIT.DUTY.MIN} = -72$ ps and $t_{\rm JIT.DUTY.MAX} = +93$ ps, then $t_{\rm RPST.MIN(DERATED)} = t_{\rm RPST.MIN} + t_{\rm JIT.DUTY.MIN} = 0.4$ x $t_{\rm CK.AVG} 72$ ps = +928 ps and $t_{\rm RPST.MIAX(DERATED)} = t_{\rm RPST.MAX} + t_{\rm JIT.DUTY.MAX} = 0.6$ x $t_{\rm CK.AVG} + 93$ ps = +1592 ps. (Caution on the MIN/MAX usage!).
- 34) For these parameters, the DDR2 SDRAM device is characterized and verified to support $t_{\text{nPARAM}} = \text{RU}\{t_{\text{PARAM}} / t_{\text{CKAVG}}\}$, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support $t_{\text{nRP}} = \text{RU}\{t_{\text{RP}} / t_{\text{CKAVG}}\}$, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which $t_{\text{RP}} = 15$ ns, the device will support $t_{\text{nRP}} = \text{RU}\{t_{\text{RP}} / t_{\text{CKAVG}}\} = 5$, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at Tm + 5 is valid even if (Tm + 5 Tm) is less than 15 ns due to input clock jitter.
- 35) t_{WTR} is at lease two clocks (2 x t_{CK}) independent of operation frequency.

3.5 ODT AC Electrical Characteristics

This chapter describes the ODT AC electrical characteristics.

	0.57.40				SLE 1
Symbol	Parameter / Condition	Values	and Operating Condit	Unit	Note
		Min.	Max.		
t_{AOND}	ODT turn-on delay	2	2	n_{CK}	1)
t_{AON}	ODT turn-on	t _{AC.MIN}	$t_{\rm AC.MAX}$ + 0.7 ns	ns	1)2)
t_{AONPD}	ODT turn-on (Power-Down Modes)	$t_{AC.MIN}$ + 2 ns	$2 t_{CK} + t_{AC.MAX} + 1 \text{ ns}$	ns	1)
t_{AOFD}	ODT turn-off delay	2.5	2.5	n_{CK}	1)
t_{AOF}	ODT turn-off	t _{AC.MIN}	$t_{\rm AC.MAX}$ + 0.6 ns	ns	1)3)
t_{AOFPD}	ODT turn-off (Power-Down Modes)	$t_{AC.MIN}$ + 2 ns	$2.5 t_{CK} + t_{AC.MAX} + 1 ns$	ns	1)
$t_{\sf ANPD}$	ODT to Power Down Mode Entry Latency	3	_	n_{CK}	1)
t_{AXPD}	ODT Power Down Exit Latency	8	_	n_{CK}	1)

¹⁾ New units, " $t_{\text{CK,AVG}}$ " and " n_{CK} ", are introduced in DDR2-667 and DDR2-800 Unit " $t_{\text{CK,AVG}}$ " represents the actual $t_{\text{CK,AVG}}$ of the input clock under operation. Unit " n_{CK} " represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and DDR2-533, " t_{CK} " is used for both concepts. Example: $t_{\text{XP}} = 2 \left[n_{\text{CK}} \right]$ means; if Power Down exit is registered at T_{m} , an Active command may be registered at $T_{\text{m}} + 2$, even if $\left(T_{\text{m}} + 2 - T_{\text{m}} \right)$ is 2 x $t_{\text{CK,AVG}} + t_{\text{ERR,2PER(Min)}}$.

UnilC techdoc, Rev.A 2016-03

²⁾ ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from t_{AOND} , which is interpreted differently per speed bin. For DDR2-667/800 t_{AOND} is 2 clock cycles after the clock edge that registered a first ODT HIGH counting the actual input clock edges.

³⁾ ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from t_{AOFD} , which is interpreted differently per speed bin. For DDR2-667/800, if $t_{CK(avg)} = 3$ ns is assumed, t_{AOFD} is 1.5 ns (= 0.5 x 3 ns) after the second trailing clock edge counting from the clock edge that registered a first ODT LOW and by counting the actual input clock edges.

3.6 $I_{\rm DD}$ Specifications and Conditions

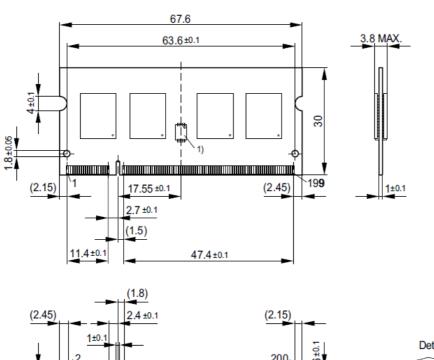
List of tables defining $I_{\rm DD}$ Specifications and Conditions.

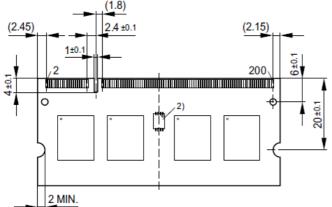
$I_{ t DD}$ Measure		LE 15 nditions
Parameter	Symbol	Note ¹⁾²⁾ 3)4)5)
Operating Current 0 One bank Active - Precharge; $t_{\text{CK}} = t_{\text{CK.MIN}}$, $t_{\text{RC}} = t_{\text{RC.MIN}}$, $t_{\text{RAS}} = t_{\text{RAS.MIN}}$, CKE is HIGH, $\overline{\text{CS}}$ is HIGH between valid commands. Address and control inputs are SWITCHING, Databus inputs are SWITCHING.	I_{DD0}	
Operating Current 1 One bank Active - Read - Precharge; $I_{\text{OUT}} = 0$ mA, BL = 4, $t_{\text{CK}} = t_{\text{CK.MIN}}$, $t_{\text{RC}} = t_{\text{RC.MIN}}$, $t_{\text{RAS}} = t_{\text{RAS.MIN}}$, $t_{\text{RCD}} = t_{\text{RCD.MIN}}$, AL = 0, CL = CL _{MIN} ; CKE is HIGH, $\overline{\text{CS}}$ is HIGH between valid commands. Address and control inputs are SWITCHING, Databus inputs are SWITCHING.	I_{DD1}	6)
Precharge Standby Current All banks idle; \overline{CS} is HIGH; CKE is HIGH; $t_{CK} = t_{CK.MIN}$; Other control and address inputs are SWITCHING, Databus inputs are SWITCHING.	I_{DD2N}	
Precharge Power-Down Current Other control and address inputs are STABLE, Data bus inputs are FLOATING.	I_{DD2P}	
Precharge Quiet Standby Current All banks idle; \overline{CS} is HIGH; CKE is HIGH; $t_{CK} = t_{CK.MIN}$; Other control and address inputs are STABLE, Data bus inputs are FLOATING.	I_{DD2Q}	
Active Standby Current Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CL _{MIN} ; $t_{CK} = t_{CK,MIN}$; $t_{RAS} = t_{RAS,MAX}$, $t_{RP} = t_{RP,MIN}$; CKE is HIGH, \overline{CS} is HIGH between valid commands. Address inputs are SWITCHING; Data Bus inputs are SWITCHING; $I_{OUT} = 0$ mA.	I_{DD3N}	
Active Power-Down Current All banks open; $t_{CK} = t_{CK.MIN}$, CKE is LOW; Other control and address inputs are STABLE, Data bus inputs are FLOATING. MRS A12 bit is set to LOW (Fast Power-down Exit);	$I_{DD3P(0)}$	
Active Power-Down Current All banks open; $t_{CK} = t_{CK.MIN}$, CKE is LOW; Other control and address inputs are STABLE, Data bus inputs are FLOATING. MRS A12 bit is set to HIGH (Slow Power-down Exit);	I _{DD3P(1)}	
Operating Current - Burst Read All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CL_{MIN} ; $t_{CK} = t_{CKMIN}$; $t_{RAS} = t_{RASMAX}$; $t_{RP} = t_{RPMIN}$; CKE is HIGH, CS is HIGH between valid commands; Address inputs are SWITCHING; Data bus inputs are SWITCHING; $I_{OUT} = 0$ mA.	I_{DD4R}	6)
Operating Current - Burst Write All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CL_{MIN} ; $t_{CK} = t_{CK.MIN}$; $t_{RAS} = t_{RAS.MAX.}$, $t_{RP} = t_{RP.MAX}$; CKE is HIGH, \overline{CS} is HIGH between valid commands. Address inputs are SWITCHING; Data Bus inputs are SWITCHING;	I_{DD4W}	
Burst Refresh Current $t_{\text{CK}} = t_{\text{CK.MIN}}$, Refresh command every $t_{\text{RFC}} = t_{\text{RFC.MIN}}$ interval, CKE is HIGH, $\overline{\text{CS}}$ is HIGH between valid commands, Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING.	I_{DD5B}	
Distributed Refresh Current $t_{\text{CK}} = t_{\text{CK.MIN.}}$, Refresh command every $t_{\text{RFC}} = t_{\text{REFI}}$ interval, CKE is LOW and $\overline{\text{CS}}$ is HIGH between valid commands, Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING.	I_{DD5D}	

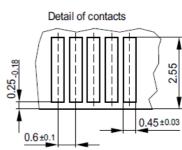
Parameter	Symbol	Note ¹⁾²⁾ 3)4)5)
Self-Refresh Current CKE \leq 0.2 V; external clock off, CK and $\overline{\text{CK}}$ at 0 V; Other control and address inputs are FLOATING, Data bus inputs are FLOATING. I_{DD6} current values are guaranteed up to T_{CASE} of 85 °C max.	I_{DD6}	
All Bank Interleave Read Current All banks are being interleaved at minimum $t_{\rm RC}$ without violating $t_{\rm RRD}$ using a burst length of 4. Control and address bus inputs are STABLE during DESELECTS. $I_{\rm out} = 0$ mA.	I_{DD7}	6)

- 1) $V_{\rm DDQ} = 1.8 \text{ V} \pm 0.1 \text{ V}; V_{\rm DD} = 1.8 \text{ V} \pm 0.1 \text{ V}$ 2) $I_{\rm DD}$ specifications are tested after the device is properly initialized and $I_{\rm DD}$ parameter are specified with ODT disabled.
- 3) Definitions for $I_{\rm DD}$ see **Table 16**
- 4) For two rank modules: All active current measurements in the same $I_{\rm DD}$ current mode. The other rank is in $I_{\rm DD2P}$ Precharge Power-Down
- 5) For details and notes see the relevant UniIC component data sheet.
- 6) I_{DD1} , I_{DD4R} and I_{DD7} current measurements are defined with the outputs disabled ($I_{\text{OUT}} = 0 \text{ mA}$). To achieve this on module level the output buffers can be disabled using an EMRS(1) (Extended Mode Register Command) by setting A12 bit to HIGH.

	TABLE 16 Definitions for $I_{ m DD}$				
Parameter	Description				
LOW	$V_{IN} \leq V_{IL(ac).MAX}, \; HIGH \; is \; defined \; as \; V_{IN} \geq V_{IH(ac).MIN}$				
STABLE	Inputs are stable at a HIGH or LOW level.				
FLOATING	Inputs are $V_{\rm REF} = V_{\rm DDQ}/2$				
SWITCHING	Inputs are changing between HIGH and LOW every other clock (once per 2 cycles) for address and control signals, and inputs changing between HIGH and LOW every other data transfer (once per cycle) for DQ signals not including mask or strobes.				




			TABLE 17
			<i>I</i> _{DD} Specification for HXSS2GT64280CE–25E
Product Type		Unit	Note ¹⁾²⁾
	HXSS2GT64280CE-25E		
Organization	2GB		
	2 Ranks (×8)	-	
	×64		
	-25E		
Symbol	Max.		
I_{DD0}	616	mA	3)
I_{DD1}	696	mA	3)
I_{DD2N}	720	mA	4)
I_{DD2P}	192	mA	4)
I_{DD2Q}	720	mA	4)
I_{DD3N}	880	mA	4)
I _{DD3P_0 (fast)}	400	mA	4)
$I_{\mathrm{DD3P_1~(slow)}}$	432	mA	4)
I_{DD4R}	1376	mA	3)
I_{DD4W}	1376	mA	3)
I_{DD5B}	1256	mA	3)
I_{DD5D}	224	mA	4)
I_{DD6}	224	mA	4)
I_{DD7}	1456	mA	3)


¹⁾ Calculated values from component data. ODT disabled. $I_{\rm DD1}$, $I_{\rm DD4R}$ and $I_{\rm DD7}$ are defined with the outputs disabled. 2) $I_{\rm DDX~(fank)}$ = Number of components x $I_{\rm DDX~(component)}$ 3) $I_{\rm DDX} = I_{\rm DDX~(rank)} + ({\rm Rank-1})^* I_{\rm DD2P~(rank)}$ 4) $I_{\rm DDX} = {\rm Rank^*} I_{\rm DDX~(rank)}$

4 Package Dimensions

Contents

1	Overview	3
1.1	Features	
1.2	Description	4
2	Pin Configurations	5
2.1	Pin Configurations	5
3	Electrical Characteristics	12
3.1	Absolute Maximum Ratings	
3.2	Operating Conditions	13
3.3	Speed Grade Definitions	14
3.4	Component AC Timing Parameters	
3.5	ODT AC Electrical Characteristics	20
3.6	I _{DD} Specifications and Conditions	21
4	Package Dimensions	24

Edition 2016-03 Published by Xi'an UniIC Semiconductors Co., Ltd.

Xi'an: 4th Floor, Building A, No. 38 Gaoxin 6th Road, Xian High-tech Industries Development Zone Xi'an, Shanxi 710075, P. R. China

Tel: +86-29-88318000 Fax: +86-29-88453299

info@unisemicon.com

© UniIC 2012. All Rights Reserved.

Legal Disclaimer

THE INFORMATION GIVEN IN THIS INTERNET DATA SHEET SHALL IN NO EVENT BE REGARDED AS A GUARANTEE OF CONDITIONS OR CHARACTERISTICS. WITH RESPECT TO ANY EXAMPLES OR HINTS GIVEN HEREIN, ANY TYPICAL VALUES STATED HEREIN AND/OR ANY INFORMATION REGARDING THE APPLICATION OF THE DEVICE, UNIIC HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND, INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest UniIC Office.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest UniIC Office.

UnilC Components may only be used in life-support devices or systems with the express written approval of UnilC, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

www.unisemicon.com