Nov. 2018

SCB13H2G800DF

2Gbit DDR3L SDRAM EU RoHS Compliant Products

Data Sheet

Rev. A

Revision History:					
Date Revision Subjects (major changes since last revision)					
2018-11	A	Initial release Format review (2020-05)			

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: info@unisemicon.com

Contents

Cor	ontents	3
1	Features	4
2	Product List	5
3	Ball configuration	6
4	Ball Description	7
5	Electrical Specifications	
6	Speed Bin	10
7	Electrical Characteristics & Timing	12
	7.1 Reference Load for AC Timing and Output Slew Rate	12
	7.2 Timing Parameters by Speed Grade	
8	Package Outlines	27
9	Product Type Nomenclature	28
List	st of Figures	29
List	st of Tables	30

1 Features

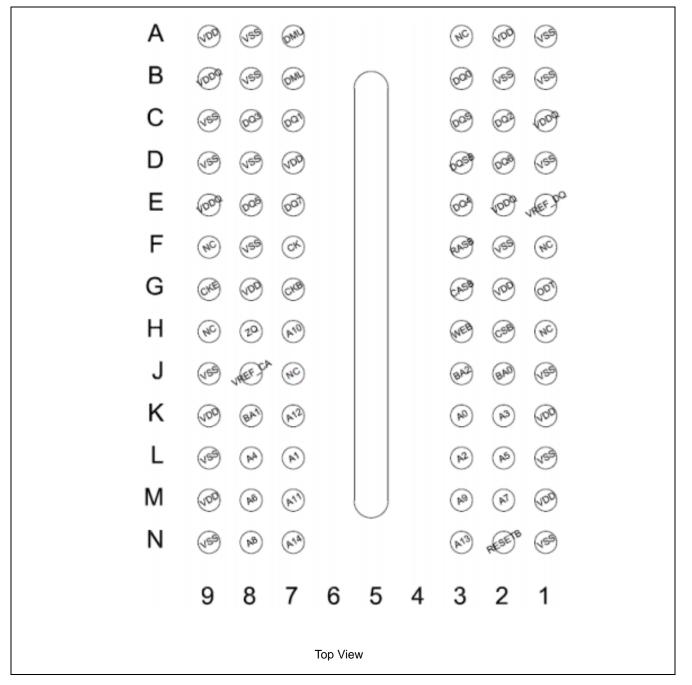
The 2Gbit DDR3L SDRAM offers the following key features:

- Density: 2Gbits
- Power Supply
 - VDD,=VDDQ=1.35V(1.283-1.45V)
 - Backward compatible to be backward compatible in 1.5V application.
- Differential bidirectional data strobe
- 8n-bit prefetcharchitecture
- Data rate:
 - 1866Mbps,1600Mbps
- 8 Internal Banks:
- Nominal and dynamic on-die termination (ODT) for data, strobe, and mask signals
- Programmable CAS (READ) latency (CL)
- Programmable posted CAS additive latency (AL)
- Programmable CAS (WRITE) latency (CWL)
- Fixed burst length (BL) of 8 and burst chop (BC) of 4 (via the mode register set [MRS])
- Selectable BC4 or BL8 on-the-fly (OTF)
- Selfrefreshmode
- Pre-charge: auto pre-charge option for each burst access
- Refresh: auto-refresh, self-refresh

- Refresh cycles
 - 7.8um at 0°℃≤Tc≤+85°℃
 - 3.9um at 85℃≤Tc≤+95℃
- Timing –cycle time
 - 1.07ns @CL=13(DDR3-1866)
 - 1.25ns @CL=11(DDR3-1600)
- Operating case temperature range:
 - C: Commercial Tc =0 $^{\circ}$ C to +95 $^{\circ}$ C
- Configuration
 - 256Meg x8
- Package
 - 78Ball FBGA
- Green Product
 - Pb-free
 - RoHS

2 Product List

 Table 1 shows all possible products within the 2Gbit DDR3L SDRAM component generation.


Table 1 - Ordering Information for 2Gbit DDR3L Component

UnilC Part Number	Max. Clock Frequency	CAS-RCD-RP Latencies	Speed Sort Name	Package
2Gbit DDR3L SDRAM Compo	onents in × 8 Organization	(256M × 8)		
SCB13H2G800DF-11M	1866MHz	13-13-13	DDR3-1866M	PG-FBGA-78
SCB13H2G800DF-13K	1600 MHz	11-11-11	DDR3-1600K	PG-FBGA-78

3 Ball configuration

Figure 1 - Ball out for 256 Mb ×8 Components (FBGA-78)

4 Ball Description

Table 2 - Input / Output Signal Functional Description

Symbol	Туре	Function
CK, CK#	Input	Clock: CK and CK# are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK and negative edge of CK#.
CKE	Input	Clock Enable: CKE High activates, and CKE Low deactivates internal clock signals and device input buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self-Refresh operation (all banks idle), or Active Power-Down (active row in any bank). CKE is asynchronous for Self-Refresh exit. After <i>V</i> _{REFCA} and <i>V</i> _{REFDQ} have become stable during the power on and initialization sequence, they must be maintained during all operations (including Self-Refresh). CKE must be maintained High throughout read and write accesses. Input buffers, excluding CK, CK#, ODT, CKE and RESET# are disabled during Power-down. Input buffers, excluding CKE and RESET are disabled during self refresh.
CS#	Input	Chip Select: All commands are masked when CS# is registered High. CS# provides for external Rank selection on systems with multiple ranks. CS# is considered part of the command code.
RAS#, CAS#, WE#	Input	Command Inputs: RAS# , CAS# and WE# (along with CS#) define the command being entered.
ODT	Input	On-Die Termination: ODT (registered High) enables termination resistance internal to the DDR3 SDRAM. When enabled, ODT is applied to each DQ, DQSU, DQSU#, DQSL, DQSL#, DMU and DML signal for ×16 configurations. The ODT signal will be ignored if the Mode Register MR1 and MR2 are programmed to disable ODT and during Self Refresh.
DM	Input	Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges of DQS.
BA0 - BA2	Input	Bank Address Inputs: Define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines which mode register is to be accessed during a mode register set cycle.
A[14:13], A12, A11, A10/AP, A[9:0]	Input	Address inputs: Provide the row address for ACTIVATE commands, and the column address and auto precharge bit (A10) for READ/WRITE commands, to select one location out of the memory array in the respective bank. A10 sampled during a PRECHARGE command determines whether the PRECHARGE applies to one bank (A10 LOW, bank selected by BA[2:0]) or all banks (A10 HIGH). The address inputs also provide the

Symbol	Туре	Function
		op-code during a LOAD MODE command. Address inputs are referenced to VREFCA. A12 is sampled during READ and WRITE commands to determine whether burst chop (on-the-fly) will be performed (HIGH = BL8 or no burst chop, LOW = BC4).
DQ(DQL0~7), (DQU0~7)	Input/ Output	Data Input/Output: Bi-directional data bus.
DQSL,DQSL# DQSU, DQSU#	Input/ Output	Data Strobe: Output with read data, input with write data. Edge-aligned with read data, centered in write data. For the x16, DQSL corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data strobe DQSL and DQSU are paired with differential signals DQSL# and DQSU#, respectively, to provide differential pair signaling to the system during reads and writes. DDR3 SDRAM supports differential data strobe only and does not support single-ended.
RESET#	Input	Active Low Asynchronous Reset: Reset is active when RESET# is Low, and inactive when RESET# is High. RESET# must be High during normal operation. RESET# is a CMOS rail to rail signal with DC High and Low are 80% and 20% of V_{DD} , RESET# active is destructive to data contents.
NC	_	No Connect: no internal electrical connection is present
V _{DDQ}	Supply	DQ Power Supply: 1.35V
VSSQ	Supply	DQ Ground
V _{DD}	Supply	Power Supply: 1.35V
V _{SS}	Supply	Ground
VREFDQ	Supply	Reference Voltage for DQ
VREFCA	Supply	Reference Voltage for Command and Address inputs
ZQ	Supply	Reference ball for ZQ calibration

5 Electrical Specifications

Table 3 - IDD & IDDQ Specification

Parameter	Symbol	DDR3L-1600	DDR3L-1866	Unit	
Operating current 0: One bank ACTIVATE-to-PRECHARGE	IDD0	47	49	mA	1, 2
Operating current 1: One bank ACTIVATE-to-READ-to-PRECHARGE	IDD1	61	64	mA	1, 2
Precharge power-down current: Slow exit	IDD2P0	8	8	mA	1, 2
Precharge power-down current: Fast exit	IDD2P1	14	16	mA	1, 2
Precharge quiet standby current	IDD2Q	24	26	mA	1, 2
Precharge standby current	IDD2N	24	26	mA	1, 2
Precharge standby ODT current	IDD2NT	28	30	mA	1,2
Active power-down current	IDD3P	26	28	mA	1, 2
Active standby current	IDD3N	30	32	mA	1, 2
Burst read operating current	IDD4R	95	105	mA	1, 2
Burst write operating current	IDD4W	95	105	mA	1, 2
Burst refresh current	IDD5B	235	242	mA	1, 2,3
Room temperature self refresh	IDD6	12	12	mA	2,4
Extended temperature self refresh	IDD6E	16	16	mA	1, 2
All banks interleaved read current	IDD7	130	130	mA	1, 2
Reset current	IDD8	IDD2P + 2mA	IDD2P + 2mA	mA	

Notes:

- 1. Tc = 85°C; SRT and ASR are disabled.
- 2. Enabling ASR could increase IDDx by up to an additional 2mA.
- 3. Restricted to Tc (MAX) = 85°C.
- 4. $Tc = 85^{\circ}C$; ASR and ODT are disabled; SRT is enabled.
- The lob values must be derated (increased) on IT-option devices when operated outside of the range 0°C ≤ Tc ≤ +85°C:
 - a. 5a. When Tc < 0°C: IDD2P0, IDD2P1 and IDD3P must be derated by 4%; IDD4R and IDD4w must be derated by 2%; and IDD6, IDD6ET and IDD7 must be derated by 7%.
 - b. 5b. When Tc > 85°C: IDD0, IDD1, IDD2N, IDD2NT, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, and IDD5B must be derated by 2%; IDD2Px must be derated by 30%.

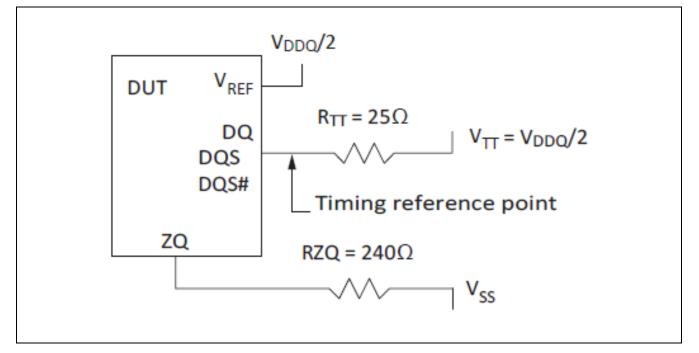
6 Speed Bin

Table 4 - DDR3-1600 Speed Bins

Speed Bin		DDR3-1600	DDR3-1600			
CL-nRCD-r	ıRP		11-11-11	11-11-11		Note
Parameter		Symbol	Min.	Max.		
Internal rea	d command to first data	tAA	13.75	-	ns	
ACT to inter	rnal read or write delay time	tRCD	13.75	-	ns	
PRE comm	and period	tRP	13.75	-	ns	
ACT to PRE	command period	tRAS	35	9*tREFI	ns	
-		tRC	48.75		ns	
CL=5	CWL=5	tCK(avg)	3.0	3.3	ns	
CL=5	CWL=6,7,8	tCK(avg)	Reserved	Reserved		
	CWL=5	tCK(avg)	2.5	3.3		
CL=6	CWL=6	tCK(avg)	Reserved		ns	
	CWL=7,8	tCK(avg)	Reserved		ns	
	CWL=5	tCK(avg)	Reserved		ns	
	CWL=6	tCK(avg)	1.875	<2.5	ns	
CL=7,8	CWL=7	tCK(avg)	Reserved		ns	
	CWL=8	tCK(avg)	Reserved		ns	
CL=9,10	CWL=5,6	tCK(avg)	Reserved		ns	
	CWL=7	tCK(avg)	1.5	<1.875	ns	
	CWL=8	tCK(avg)	Reserved		ns	
CL=11	CWL=5,6,7	tCK(avg)	Reserved	Reserved		
	CWL=8	tCK(avg)	1.25	<1.5	ns	
Supported	CL setting		5,6,7,8,9,10,11		СК	13,14
Supported	CWL setting		5,6,7,8		nCK	

Table 5 - DDR3-1866 Speed Bins

Speed Bin		DDR3-1866				
CL-nRCD-nRP			13-13-13		Unit	Note
Parameter Symbol			Min.	Max.		
Internal rea	d command to first data	tAA	13.91	-	ns	
ACT to inte	rnal read or write delay time	tRCD	13.91	-	ns	
PRE comm	and period	tRP	13.91	-	ns	
ACT to PRE	E command period	tRAS	34	9*tREFI	ns	
ACT to ACT	For REF command period	tRC	47.91		ns	
	CWL=5	tCK(avg)	3.0	3.3	ns	
CL=5	CWL=6,7,8,9	tCK(avg)	Reserved		ns	
CL=6	CWL=5	tCK(avg)	2.5	3.3	ns	
CL=0	CWL=6,7,8,9	tCK(avg)	Reserved		ns	
01 7	CWL=5,7,8,9	tCK(avg)	Reserved		ns	
CL=7	CWL=6	tCK(avg)	1.875	<2.5	ns	
	CWL=5,8,9	tCK(avg)	Reserved		ns	
CL=8	CWL=6	tCK(avg)	1.875	<2.5	ns	
	CWL=7	tCK(avg)	Reserved		ns	
	CWL=5,6,8,9	tCK(avg)	Reserved	Reserved		
CL=9	CWL=7	tCK(avg)	1.5	<1.875	ns	
	CWL=5,6,9	tCK(avg)	Reserved		Ns	
CL=10	CWL=7	tCK(avg)	1.5	<1.875		
	CWL=8	tCK(avg)	Reserved		ns	
	CWL=5,6,7	tCK(avg)	Reserved		ns	
CL=11	CWL=8	tCK(avg)	1.25	<1.5	ns	
	CWL=9	tCK(avg)	Reserved		ns	
CI _12	CWL=5,6,7,9	tCK(avg)	Reserved		ns	
CL=12	CWL=9	tCK(avg)	Reserved		ns	
<u> </u>	CWL=5,6,7,8	tCK(avg)	Reserved		ns	
CL=13	CWL=9	tCK(avg)	Reserved		ns	
Supported	CL setting	· ·	5,6,7,8,9,10,11,13		СК	
Supported	CWL setting		5,6,7,8,9		СК	



7 Electrical Characteristics & Timing

7.1 Reference Load for AC Timing and Output Slew Rate

Figure 2 represents the effective reference load of 25Ω used in defining the relevant timing parameters of the device as well as for output slew rate measurements. It is not intended as either a precise representation of the typical system environment nor a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics

Figure 2 - Reference Load for AC Timings and Output Slew Rates

7.2 Timing Parameters by Speed Grade

Table 6 - AC Timing parameters

Parameter			DDR3L-1600			
		Symbol	Min	Max	Unit	Notes
		Class!				
	-		Timing			
Clock period average: DLL disable mode	T _C ≤ 85°C	^t CK (DLL_DIS)	8	7800	ns	9, 42
	T _c = >85°C to 95°C		8	3900	ns	42
Clock period average: DLL enable mo	de	^t CK (AVG)			ns	10, 11
High pulse width average		^t CH (AVG)	0.47	0.53	CK	12
Low pulse width average		^t CL (AVG)	0.47	0.53	СК	12
Clock period jitter	DLL locked	^t JITper	-70	70	ps	13
	DLL locking	^t JITper,lck	-60	60	ps	13
Clock absolute period		^t CK (ABS)	MIN = tCK (AVG) MIN + tJITper N tJITper	/IN; MAX = tCK (AVG) MAX +	ps	
Clock absolute high pulse width		^t CH (ABS)	0.43	-	^t CK (AVG)	14
Clock absolute low pulse width		^t CL (ABS)	0.43	-	^t CK (AVG)	15
Cycle-to-cycle jitter	DLL locked	^t JITcc	140		ps	16
	DLL locking	^t JITcc,lck	120		ps	16
Cumulative error across	2 cycles	^t ERR2per	-103	103	ps	17
	3 cycles	^t ERR3per	-122	122	ps	17
	4 cycles	^t ERR4per	-136	136	ps	17
	5 cycles	^t ERR5per	-147	147	ps	17
	6 cycles	^t ERR6per	-155	155	ps	17
	7 cycles	^t ERR7per	-163	163	ps	17
	8 cycles	^t ERR8per	-169	169	ps	17
	9 cycles	^t ERR9per	-175	175	ps	17
	10 cycles	tERR10per	-180	180	ps	17
	11 cycles	^t ERR11per	-184	184	ps	17
	12 cycles	^t ERR12per	-188	188	ps	17
	n = 13, 14 49, 50 cycles	^t ERR <i>n</i> per	tERRnper MIN = (1 + 0.68in[n]) × tJITper MIN tERRnper MAX = (1 + 0.68in[n]) × tJITper MAX		ps	17

		DDR3L-1600				
Parameter		Symbol	Min	Max	Unit	Notes
	DC	Input Timing	1			I
Data setup time to DQS, DQS#	Base (specification)	^t DS (AC160)	-	-	ps	18, 19, 44
	V _{REF} @ 1 V/ns		-	-	ps	19, 20
Data setup time to DQS, DQS#	Base (specification)	^t DS (AC135)	25	-	ps	18, 19, 44
	V _{REF} @ 1 V/ns		160	-	ps	19, 20
Data hold time from DQS, DQS#	Base (specification)	^t DH	55	-	ps	18, 19
	V _{REF} @ 1 V/ns	(DC90)	145	-	ps	19, 20
Minimum data pulse width		^t DIPW	360	-	ps	41
	DQ	Output Timing		•		·
DQS, DQS# to DQ skew, per access		^t DQSQ	-	100	ps	
DQ output hold time from DQS, DQS#		^t QH	0.38	-	^t CK (AVG)	21
DQ Low-Z time from CK, CKB	^t LZDQ	-450	225	ps	22, 23	
DQ High-Z time from CK, CKB		^t HZDQ	-	225	ps	22, 23
	DQ St	robe Input Timing	1		I	I
DQS, DQS# rising to CK, CKB rising		^t DQSS	-0.27	0.27	СК	25
DQS, DQS# differential input low pu	ilse width	^t DQSL	0.45	0.55	СК	
DQS, DQS# differential input high p	ulse width	^t DQSH	0.45	0.55	СК	
DQS, DQS# falling setup to CK, CKB	rising	^t DSS	0.18	-	СК	25
DQS, DQS# falling hold from CK, CK	B rising	^t DSH	0.18	-	СК	25
DQS, DQS# differential WRITE prear	nble	*WPRE	0.9	-	СК	
DQS, DQS# differential WRITE posta	amble	tWPST	0.3	-	СК	
	DQ Stre	obe Output Timing	1			
DQS, DQS# rising to/from rising CK,	СКВ	^t DQSCK	-225	225	ps	23
DQS, DQS# rising to/from rising CK,	СКВ	^t DQSCK	-225	225	ps	23
DQS, DQS# rising to/from rising CK, CKB when DLL is disabled		^t DQSCK (DLL_DIS)	1	10	ns	26
DQS, DQS# differential output high time		^t QSH	0.40	-	СК	21
DQS, DQS# differential output low t	ime	tQSL	0.40	-	СК	21

			DDR			
Parameter		Symbol	Min	Max	Unit	Notes
DQS, DQS# Low-Z time (RL - 1)		^t LZDQS	-450	225	ps	22, 23
DQS, DQS# High-Z time (RL + I	BL/2)	^t HZDQS	-	225	ps	22, 23
DQS, DQS# differential READ	preamble	^t RPRE	0.9	Note 24	СК	23, 24
DQS, DQS# differential READ	postamble	^t RPST	0.3	Note 27	СК	23, 27
	1	Command and Addr	ess Timing			
DLL locking time		^t DLLK	512	-	СК	28
CTRL, CMD, ADDR	Base (specification)	tIS	60	-	ps	29, 30,
setup to CK,CKB		(AC160)				44
	V _{REF} @ 1 V/ns		220	-	ps	20, 30
CTRL, CMD, ADDR	Base (specification)	^t IS	185	-	ps	29, 30,
setup to CK,CKB		(AC135)				44
	VREF @ 1 V/ns		320	-	ps	20, 30
CTRL, CMD, ADDR	Base (specification)	ЧН	130	-	ps	29, 30,
setup to CK,CKB		(DC90				44
	V _{REF} @ 1 V/ns		220	-	ps	20, 30
Minimum CTRL, CMD, ADDR p	oulse width	^t IPW	560	-	ps	41
ACTIVATE to internal READ or	WRITE delay	^t RCD	See Speed Bin Tables for tRCD		ns	31
PRECHARGE command period		^t RP	See Speed Bin Tables for tRP		ns	31
ACTIVATE-to-PRECHARGE con	nmand period	^t RAS	See Speed Bin	Tables for tRAS	ns	31, 32
ACTIVATE-to-ACTIVATE comm	nand period	^t RC	See Speed Bin	Tables for tRC	ns	31, 43
ACTIVATE-to-ACTIVATE minimum command period	X8 (1KB page size)	^t RRD	MIN = greater	r of 4CK or 6ns	СК	31
Four ACTIVATE	X8 (1KB page size)	^t FAW	30	-	ns	31
windows					ns	31
Write recovery time		tWR	MIN = 15ns; MAX = N/A		ns	31, 32, 33,34
Delay from start of internal W	/RITE transaction to	tWTR	MIN = greater of 4Ck	or 7.5ns; MAX = N/A	СК	31, 34
internal READ command						
READ-to-PRECHARGE time		^t RTP	MIN = greater of 4Ck	or 7.5ns; MAX = N/A	CK	31, 32

			DDR3L	-1600		
Parameter		Symbol	Min	Max	Unit	Notes
CASB-to-CASB comman	d delay	^t CCD	MIN = 4CK;	MAX = N/A	СК	
Auto precharge write re	covery + precharge	^t DAL	MIN = WR + tRP/tCk	((AVG); MAX = N/A	СК	
time						
MODE REGISTER SET co	mmand cycle time	^t MRD	MIN = 4CK;	MAX = N/A	СК	
MODE REGISTER SET co	mmand update delay	^t MOD	MIN = greater of 12Ck	(or 15ns; MAX = N/A	СК	
MULTIPURPOSE REGIST mode register set for m exit		^t MPRR	MIN = 1CK;	MAX = N/A	СК	
			Calibration Timing		I	
ZQCL command: Long calibration time	POWER-UP and RE- SET operation	^t ZQinit	512 _		СК	
	Normal operation	^t ZQoper	256	-	СК	
ZQCS command: Short of	alibration time	^t ZQCS	64	-	СК	
		In	itialization and Reset Timing			
Exit reset from CKE HIG	H to a valid command	^t XPR	MIN = greater of 5CK or	^t RFC + 10ns; MAX = N/A	СК	
Begin power supply ramp to power supplies stable		*VDDPR	MIN = N/A; MAX = 200		ms	
RESET# LOW to power s	upplies stable	^t RPS	MIN = 0; MAX = 200		ms	
RESET# LOW to I/O and	RTT High-Z	^t IOZ	MIN = N/A; MAX = 20		ns	35
			Refresh Timing		I	
REFRESH-to-ACTIVATE of	or REFRESH	^t RFC – 1Gb			ns	
command period		^t RFC – 2Gb	MIN = 260; N	1AX = 70,200	ns	
		^t RFC – 4Gb			ns	
		^t RFC – 8Gb			ns	
Maximum refresh	Tc ≤ 85°C	_	64 (1X)	ms	36
period	Tc > 85°C	-	64 (1X) 32 (2X)		ms	36
Maximum average	Tc ≤ 85°C	^t REFI	7.8 (64ms/8192)		us	36
periodic refresh	Tc > 85°C		3.9 (32ms/8192)		us	36
			Self Refresh Timing			
Exit self refresh to comr locked DLL	mands not requiring a	^t XS	MIN = greater of 5CK or	^t RFC + 10ns; MAX = N/A	СК	

Data Sheet SCB13H2G800DF 2Gbit DDR3L SDRAM

		DDR3I	L-1600		
Parameter	Symbol	Min	Max	Unit	Note
Exit self refresh to commands requiring a locked DLL	^t XSDLL	MIN = ^t DLLK (MIN); MAX = N/A		СК	28
Minimum CKE low pulse width for self re- fresh entry to self refresh exit timing	^t CKESR	MIN = "CKE (MIN) -	+ CK; MAX = N/A	СК	
Valid clocks after self refresh entry or power- down entry	^t CKSRE	MIN = greater of 5CK or 10ns; MAX = N/A		СК	
Valid clocks before self refresh exit, power-down exit, or reset exit	^t CKSRX	MIN = greater of 5CK or 10ns; MAX = N/A		СК	
		Power-Down Timing			
CKE MIN pulse width	^t CKE (MIN)	Greater of 3CK or 5ns		СК	
Command pass disable delay	^t CPDED	MIN = 1; MAX = N/A		СК	
Power-down entry to power-down exit tim- ing	^t PD	MIN = ^t CKE (MIN); MAX = 9 * tREFI		СК	
Begin power-down period prior to CKE registered HIGH	^t ANPD	WL - 1CK		СК	
Power-down entry period: ODT either synchronous or asynchronous	PDE	Greater of ^t ANPD or ^t RFC - REFRE	SH command to CKE LOW time	СК	
Power-down exit period: ODT either synchronous or asynchronous	PDX	^t ANPD +	^t XPDLL	СК	
	Power	r-Down Entry Minimum Timing			1
ACTIVATE command to power-down entry	¹ ACTPDEN	MIN	= 1	СК	
PRECHARGE/PRECHARGE ALL command to power-down entry	*PRPDEN	MIN	= 1	СК	
REFRESH command to power-down entry	^t REFPDEN	MIN = 1		СК	37
MRS command to power-down entry	^t MRSPDEN	MIN = ^t MC	DD (MIN)	СК	
READ/READ with auto precharge command to power-down entry	^t RDPDEN	MIN = RL	. + 4 + 1	СК	

BL8 (OTF, MRS) BC4OTF	tWRPDEN	MIN = WL + 4 + ^t WR/ ^t CK (AVG)	СК	
BC4MRS	tWRPDEN	$MIN = WL + 2 + {}^{t}WR/{}^{t}CK (AVG)$	СК	

Data Sheet SCB13H2G800DF 2Gbit DDR3L SDRAM

			DDR3L	-1600		
Parameter		Symbol	Min	Max	Unit	Notes
WRITE with auto	BL8 (OTF, MRS)	tWRAP-	MIN = WL + 4	4 + WR + 1	СК	
precharge command to	BC4OTF	DEN				
power-down entry	BC4MRS	^t WRAP-	MIN = WL + 2	2 + WR + 1	СК	
		DEN				
	·		Power-Down Exit Timing			
DLL on, any valid comma	and, or DLL off to	^t XP	MIN = greater of 3CK	or 6ns; MAX = N/A	СК	
commands not requiring	g locked DLL					
Precharge power-down		^t XPDLL	MIN = greater of 10CK	or 24ns; MAX = N/A	СК	28
ommands requiring a locked DLL						
			ODT Timing			
R _{TT} synchronous turn-on delay		ODTLon	CWL + AI	- 2CK	СК	38
RTT synchronous turn-off	f delay	ODTLoff	CWL + AI	AL - 2CK Ck 225 ps 0.7 Ck		40
R _{TT} turn-on from ODTL on reference		^t AON	-225	225	ps	23, 38
RTT turn-off from ODTL off reference		^t AOF	0.3	0.7	СК	39, 40
Asynchronous RTT turn-on delay		^t AONPD	MIN = 2; M	AX = 8.5	ns	38
(power-down with DLL off)						
Asynchronous R _{TT} turn-o		^t AOFPD	MIN = 2; M	AX = 8.5	ns	40
(power-down with DLL o	off)					
ODT HIGH time with WR	ITE command and	ODTH8	MIN = 6; M	AX = N/A	СК	
BL8						
ODT HIGH time without		ODTH4	MIN = 4; M.	AX = N/A	СК	
with WRITE command a	nd BC4					
			Dynamic ODT Timing			
RTT,nom-to-RTT(WR) change	e skew	ODTLcnw	WL - 2	2CK	СК	
RTT(WR)-to-RTT,nom change	e skew - BC4	ODTLcwn4	4CK + 0[DTLoff	СК	
RTT(WR)-to-RTT,nom change	e skew - BL8	ODTLcwn8	6CK + 00	DTLoff	СК	
R _{TT} dynamic change skev	N	^t ADC	0.3	0.7	СК	39
			Write Leveling Timing			·
First DQS, DQS# rising e	dge	^t WLMRD	40	-	CK	
DQS, DQS# delay	-	^t WLDQSEN	25	-	СК	
Write leveling setup from	m rising CK, CKB	tWLS	165	-	ps	
crossing to rising DQS, D						

UnilC

		DDR3	-1600		
Parameter	Symbol	Min	Max	Unit	Notes
Write leveling hold from rising DQS, DQS# crossing to rising CK, CKB crossing	tWLH	165	-	ps	
Write leveling output delay	tWLO	0	7.5	ns	
Write leveling output error	tWLOE	0	2	ns	

		DDR3L	-1866			
Parameter		Symbol	Min	Max	Unit	Notes
			Clock Timing			
Clock period average:	$T_C = 0^{\circ}C$ to $85^{\circ}C$	^t CK	8	7800	ns	9, 42
DLL disable mode	T _c = >85°C to 95°C	(DLL_DIS)	8	3900	ns	42
Clock period average: D	LL enable mode	^t CK (AVG)	See Speed Bin Tabl	es for ^t CK range allowed ns		10, 11
High pulse width average	ge	^t CH (AVG)	0.47	0.53	CK	12
Low pulse width average	ge	^t CL (AVG)	0.47	0.53	СК	12
Clock period jitter	DLL locked	^t JITper	-60	60	ps	13
	DLL locking	^t JITper,lck	-50	50	ps	13
Clock absolute period		^t CK (ABS)	MIN = t	CK (AVG) MIN +		
			^t JITpe	r MIN; MAX =		
				AVG) MAX +		
		10111100		per MAX ps	terr	
Clock absolute high pul	se width	^t CH (ABS)	0.43	-	^t CK (AVG)	14
Clock absolute low puls	e width	^t CL (ABS)	0.43	-	^t CK	15
					(AVG)	
vcle-to-cycle jitter DLL locked DLL locking		^t JITcc	12	20	ps	16
		^t JITcc,lck	10	00	ps	16
	1	,				
Cumulative error across	2 cycles	^t ERR2per	-88	88	ps	17
	3 cycles	^t ERR3per	-105	105	ps	17
	4 cycles	^t ERR4per	-117	117	ps	17
	5 cycles	^t ERR5per	-126	126	ps	17
-	6 cycles	^t ERR6per	-133	133	ps	17
	7 cycles	^t ERR7per	-139	139	ps	17
	8 cycles	^t ERR8per	-145	145	ps	17
	9 cycles	^t ERR9per	-150	150	ps	17
	10 cycles	^t ERR10per	-154	154	ps	17
	11 cycles	tERR11per	-158	158	ps	17
	12 cycles	tERR12per	-161	161	ps	17
	n = 13, 14 49, 50	^t ERR <i>n</i> per	^t ERR <i>n</i> per MIN = (1 + 0	.68ln[<i>n</i>]) × ^t JITper MIN	ps	17
	cycles		^t ERR <i>n</i> per MAX = (1 + 0.	.68In[<i>n</i>]) × ^t JITper MAX		
			DQ Input Timing			
Data setup time to DQS, DQS#	Base (specification) @ 2 V/ns	^t DS (AC130)	70	-	ps	18, 19
	VREF @ 2 V/ns	1	135	-	ps	19, 20
Data hold time from	Base (specification)	^t DH	75	-	ps	18, 19
DQS, DQS#	@ 2 V/ns	(DC90)				
	V _{REF} @ 2 V/ns	1 1	110	-	ps	19, 20
Minimum data pulse w	idth	^t DIPW	320	-	ps	41
			DQ Output Timing		1	1
DQS, DQS# to DQ skew	, per access	^t DQSQ	-	85	ps	
DQ output hold time from DQS, DQS#		^t QH	0.38	-	^t CK (AVG)	21
DQ Low-Z time from CK	C CKB	^t LZDQ	-390	195	ps	22, 23
DQ High-Z time from Cl		^t HZDQ	-	195	ps	22, 23
			DQ Strobe Input Timing			,
DQS, DQS# rising to CK,	-	^t DQSS	-0.27	0.27	СК	25
DQS, DQS# differential	input low pulse width	^t DQSL	0.45	0.55	CK	

			DDR3I	-1866		
Parameter		Symbol	Min	Max	Unit	Notes
DQS, DQS# differential i	nput high pulse	^t DQSH	0.45	0.55	СК	
width						
DQS, DQS# falling setup	to CK, CKB rising	^t DSS	0.18	_	СК	25
DQS, DQS# falling hold f	rom CK, CKB rising	^t DSH	0.18	-	СК	25
DQS, DQS# differential \	WRITE preamble	tWPRE	0.9	-	СК	
DQS, DQS# differential \	WRITE postamble	tWPST	0.3	-	СК	
			DQ Strobe Output Timing			
DQS, DQS# rising to/from	m rising CK, CKB	^t DQSCK	-195	195	ps	23
DQS, DQS# rising to/from	m rising CK, CKB	^t DQSCK	1	10	ns	26
when DLL is disabled		(DLL_DIS)				
DQS, DQS# differential output high time		^t QSH	0.40	_	СК	21
DQS, DQS# differential output low time		^t QSL	0.40	_	СК	21
DQS, DQS# Low-Z time (RL - 1)		^t LZDQS	-390	195	ps	22, 23
DQS, DQS# High-Z time	(RL + BL/2)	^t HZDQS	-	195	ps	22, 23
DQS, DQS# differential F	READ preamble	^t RPRE	0.9	Note 24	СК	23, 24
DQS, DQS# differential F	READ postamble	^t RPST	0.3	Note 27	СК	23, 27
		Co	ommand and Address Timing			
DLL locking time		^t DLLK	512	-	СК	28
CTRL, CMD, ADDR	Base (specification)	^t IS	65	-	ps	29, 30,
setup to CK,CKB		(AC135)				44
	V _{REF} @ 1 V/ns	1	200	-	ps	20, 30
CTRL, CMD, ADDR	Base (specification)	tIS	150	-	ps	29, 30,
setup to CK,CKB		(AC125)				44
	V _{REF} @ 1 V/ns		275	_	ps	20, 30
CTRL, CMD, ADDR hold	Base (specification)	ЧН	110	_	ps	29, 30
from CK,CKB	V _{REF} @ 1 V/ns	(DC90)	200	_	ps	20, 30
Minimum CTRL, CMD, A	DDR pulse width	^t IPW	535	-	ps	41
ACTIVATE to internal RE	AD or WRITE delay	^t RCD	See Speed Bin	Tables for ^t RCD	ns	31

PRECHARGE command period	^t RP	See Speed Bin Tables for ^t RP	ns	31
ACTIVATE-to-PRECHARGE command period	^t RAS	See Speed Bin Tables for ^t RAS	ns	31, 32
ACTIVATE-to-ACTIVATE command period	^t RC	See Speed Bin Tables for tRC	ns	31, 43

				DDR3L-18	66			
Parameter		Symbol	Min		M	lax	Unit	Notes
ACTIVATE-to-ACTIVATE		^t RRD		MIN = greater of	4CK or 5ns		СК	31
minimum command pe- riod	2KB page size			MIN = greater of	4CK or 6ns		СК	31
Four ACTIVATE	1KB page size	^t FAW	27			-	ns	31
windows	2KB page size		35			-	ns	31
Write recovery time		tWR		MIN = 15ns; M	AX = N/A		ns	31, 32, 33
Delay from start of inter tion to internal READ co		tWTR	MIN =	MIN = greater of 4CK or 7.5ns; MAX = N/A		СК	31, 34	
READ-to-PRECHARGE time		^t RTP	MIN =	greater of 4CK or	7.5ns; MAX = N	I/A	СК	31, 32
CASB-to-CASB command delay		^t CCD		MIN = 4CK; M	AX = N/A		СК	
Auto precharge write recovery + precharge time		^t DAL	MIN	I = WR + ^t RP/ ^t CK (A	AVG); MAX = N/	A	СК	
MODE REGISTER SET command cycle time		^t MRD		MIN = 4CK; M	AX = N/A		СК	
MODE REGISTER SET command update delay		^t MOD	MIN =	greater of 12CK o	r 15ns; MAX = N	N/A	СК	
MULTIPURPOSE REGISTER READ burst end to mode register set for multipurpose register exit		^t MPRR		MIN = 1CK; M	AX = N/A		СК	
			Calibration Tin	ning				
ZQCL command: Long calibration time	POWER-UP and RE- SET operation	^t ZQinit		MIN = N MAX = MAX(512			СК	
	Normal operation	^t ZQoper		MIN = N MAX = max(256r			СК	
ZQCS command: Short c	alibration time		MAX =	MIN = N/A max(64nCK, 80ns) ^t ZQCS		СК	
		Ir	nitialization and Re	set Timing				
Exit reset from CKE HIGH	to a valid command	^t XPR	MIN = gr	eater of 5CK or ^t RI	C + 10ns; MAX	= N/A	СК	
Begin power supply ram stable	p to power supplies	^t VDDPR		MIN = N/A; M	AX = 200		ms	
RESET# LOW to power si	upplies stable	^t RPS		MIN = 0; MA	X = 200		ms	
RESET# LOW to I/O and	R _{TT} High-Z	^t IOZ		MIN = N/A; N	1AX = 20		ns	35
			Refresh Timi	ng				

			DDR3L	-1866		
Parameter		Symbol	Min	Max	Unit	Notes
REFRESH-to-ACTIVATE	E or REFRESH	^t RFC – 1Gb			ns	
command period		^t RFC – 2Gb	MIN = 260; N	1AX = 70,200	ns	
		^t RFC – 4Gb			ns	
		^t RFC – 8Gb			ns	
Maximum refresh	timum refresh $T_C \le 85^{\circ}C$ – 64 (1X)		1X)	ms	36	
period $T_c > 8$ Maximum average $T_c \le 8$	Tc > 85°C	1 1	32 (2X)	ms	36
Maximum average	T _C ≤ 85°C	^t REFI	7.8 (64m	7.8 (64ms/8192) 3.9 (32ms/8192)		36
periodic refresh	Tc > 85°C	1 F	3.9 (32m	s/8192)	μs	36
			Self Refresh Timing			
Exit self refresh to cor locked DLL	mmands not requiring a	^t XS	MIN = greater of 5CK or	RFC + 10ns; MAX = N/A	СК	
Exit self refresh to cor locked DLL	mmands requiring a	^t XSDLL	MIN = ^t DL MAX :		СК	28
Minimum CKE low pul fresh entry to self refr		^t CKESR	MIN = ^t CKE (MIN)	+ CK; MAX = N/A	СК	
Valid clocks after self refresh entry or power- down entry		^t CKSRE	MIN = greater of 5CK	or 10ns; MAX = N/A	СК	
Valid clocks before self refresh exit, power-down exit, or reset exit		^t CKSRX	MIN = greater of 5CK	or 10ns; MAX = N/A	СК	

	Power-Down Timing							
CKE MIN pulse width	^t CKE (MIN)	Greater of 3CK or 5ns	CK					
Command pass disable delay	^t CPDED	MIN = 2; MAX = N/A	СК					
Power-down entry to power-down exit tim- ing	^t PD	MIN = ^t CKE (MIN); MAX = 9 * tREFI	СК					
Begin power-down period prior to CKE registered HIGH	^t ANPD	WL - 1CK	СК					
Power-down entry period: ODT either synchronous or asynchronous	PDE	Greater of ^t ANPD or ^t RFC - REFRESH command to CKE LOW time	СК					
Power-down exit period: ODT either synchronous or asynchronous	PDX	*ANPD + *XPDLL	СК					

Power-Down Entry Minimum Timing

				DDR3L-1	1866			
Parameter		Symbol	Min		Ma	x	Unit	Notes
ACTIVATE command to	power-down entry	^t ACTPDEN		MIN	= 2		СК	
PRECHARGE/PRECHARG	GE ALL command to	^t PRPDEN		MIN	= 2		СК	
power-down entry								
REFRESH command to p	oower-down entry	^t REFPDEN		MIN	= 2		СК	37
MRS command to powe	er-down entry	^t MRSPDEN		MIN = ^t M	OD (MIN)		СК	
READ/READ with auto precharge command to power-down entry		^t RDPDEN		MIN = R	L + 4 + 1		СК	
WRITE command to	BL8 (OTF, MRS)	tWRPDEN	MIN = WL + 4 +		СК			
power-down entry	BC4OTF			^t WR/ ^t Cl	K (AVG)			
	BC4MRS	tWRPDEN		MIN = V	VL + 2 +		СК	
				^t WR/ ^t Cl	K (AVG)			
WRITE with auto pre- charge command to power-down entry BC4MRS		^t WRAP- DEN		MIN = WL +	4 + WR + 1		СК	
		^t WRAP- DEN		MIN = WL +	2 + WR + 1		СК	
	-	F	ower-Down Ex	dit Timing				1
DLL on, any valid comm	and, or DLL off to	^t XP		MIN = greater	of 3CK or 6ns;		СК	
commands not requirin	g locked DLL			MAX :	= N/A			
Precharge power-down commands requiring a		[‡] XPDLL	MIN	= greater of 10C	K or 24ns; MAX = N	/A	СК	28
		1 1	ODT Tim	ing				
RTT synchronous turn-o	n delay	ODTL on		CWL + A	AL - 2CK		CK	38
RTT synchronous turn-o	ff delay	ODTL off		CWL + A	AL - 2CK		СК	40
RTT turn-on from ODTL	on reference	^t AON	-195	195	-180	180	ps	23, 38
RTT turn-off from ODTL	off reference	^t AOF	0.3	0.7	0.3	0.7	СК	39, 40
Asynchronous R _{TT} turn- (power-down with DLL		^{\$} AONPD	I	MIN = 2; N	VAX = 8.5		ns	38
Asynchronous R _{TT} turn-off delay (power-down with DLL off)		^t AOFPD		MIN = 2; N	MAX = 8.5		ns	40
ODT HIGH time with WRITE command and BL8		ODTH8		MIN = 6; N	/IAX = N/A		СК	

		DDR3	L-1866		
Parameter	Symbol	Min	Max	Unit	Notes
ODT HIGH time without WRITE command or with WRITE command and BC4	ODTH4	MIN = 4;	MAX = N/A	СК	
	1 1	Dynamic ODT Timing			1
R _{TT,nom} -to-R _{TT(WR)} change skew	ODTLcnw	WL	- 2CK	СК	
R _{TT(WR)} -to-R _{TT,nom} change skew - BC4	ODTLcwn4	4CK +	ODTLoff	СК	
R _{TT(WR)} -to-R _{TT,nom} change skew - BL8	ODTLcwn8	6CK + ODTLoff		СК	
R _{TT} dynamic change skew	^t ADC	0.3	0.7	СК	39
		Write Leveling Timing	-		
First DQS, DQS# rising edge	tWLMRD	40	-	CK	
DQS, DQS# delay	^t WLDQSEN	25	-	СК	
Write leveling setup from rising CK, CKB crossing to rising DQS, DQS# crossing	tWLS	140	-	ps	
Write leveling hold from rising DQS, DQS# crossing to rising CK, CKB crossing	tWLH	140	-	ps	
Write leveling output delay	tWLO	0	7.5	ns	1
Write leveling output error	tWLOE	0	2	ns	

Notes:

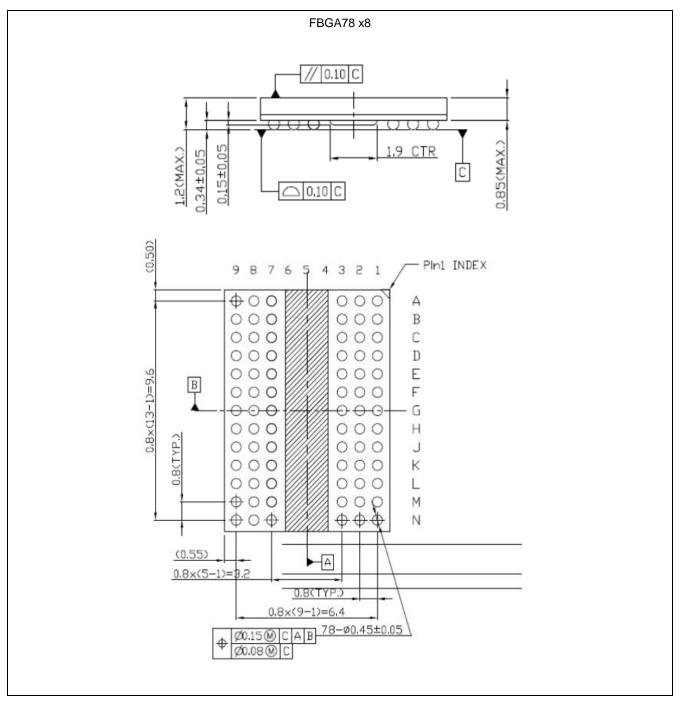
- 1. AC timing parameters are valid from specified Tc MIN to Tc MAX values.
- 2. All voltages are referenced to Vss.
- 3. Output timings are only valid for RON34 output buffer selection.
- 4. The unit tCK (AVG) represents the actual tCK (AVG) of the input clock under operation. The unit CK represents one clock cycle of the input clock, counting the actual clock edges.
- 5. AC timing and IDD tests may use a VIL-to-VIH swing of up to 900mV in the test environ- ment, but input timing is still referenced to VREF (except tIS, tIH, tDS, and tDH use the AC/DC trip points and CK, CKB and DQS, DQS# use their crossing points). The minimum slew rate for the input signals used to test the device is 1 V/ns for single-ended inputs (DQs are at 2V/ns for DDR3-1866) and 2 V/ns for differential inputs in the range between VIL(AC) and VIH(AC).
- 6. All timings that use time-based values (ns, μs, ms) should use tCK (AVG) to determine the correct number of clocks uses CK or tCK [AVG] interchangeably). In the case of noninteger results, all minimum limits are to be rounded up to the nearest whole integer, and all maximum limits are to be rounded down to the nearest whole integer.
- 7. Strobe or DQSdiff refers to the DQS and DQS# differential crossing point when DQS is the rising edge. Clock or CK refers to the CK and CKB differential crossing point when CK is the rising edge.
- This output load is used for all AC timing (except ODT reference timing) and slew rates. The actual test load may be different. The output signal voltage reference point is VDDQ/2 for single-ended signals and the crossing point for differential signals.
- 9. When operating in DLL disable mode, PTC does not warrant compliance with normal mode timings or functionality.
- 10. The clock's tCK (AVG) is the average clock over any 200 consecutive clocks and tCK(AVG) MIN is the smallest clock rate allowed, with the exception of a deviation due to clock jitter. Input clock jitter is allowed provided it does not exceed values specified and must be of a random Gaussian distribution in nature.
- 11. Spread spectrum is not included in the jitter specification values. However, the input clock can accommodate spread-spectrum at a sweep rate in the range of 20–60 kHz with an additional 1% of tCK (AVG) as a long-term jitter component; however, the spread spectrum may not use a clock rate below tCK (AVG) MIN.
- 12. The clock's tCH (AVG) and tCL (AVG) are the average half clock period over any 200 con- secutive clocks and is the smallest clock half period allowed, with the exception of a de- viation due to clock jitter. Input clock jitter is allowed provided it does not exceed values specified and must be of a random Gaussian distribution in nature.

- 13. The period jitter (tJITper) is the maximum deviation in the clock period from the average or nominal clock. It is allowed in either the positive or negative direction.
- 14. tCH (ABS) is the absolute instantaneous clock high pulse width as measured from one rising edge to the following falling edge.
- 15. tCL (ABS) is the absolute instantaneous clock low pulse width as measured from one fall- ing edge to the following rising edge.
- 16. The cycle-to-cycle jitter tJITcc is the amount the clock period can deviate from one cycle to the next. It is important to keep cycle-to-cycle jitter at a minimum during the DLL locking time.
- 17. The cumulative jitter error tERRnper, where *n* is the number of clocks between 2 and 50, is the amount of clock time allowed to accumulate consecutively away from the average clock over *n* number of clock cycles.
- 18. tDS (base) and tDH (base) values are for a single-ended 1 V/ns slew rate DQs (DQs are at 2V/ns for DDR3-1866) and 2 V/ns slew rate differential DQS, DQS#; when DQ single- ended slew rate is 2V/ns, the DQS differential slew rate is 4V/ns.
- 19. These parameters are measured from a data signal (DM, DQ0, DQ1, and so forth) transi- tion edge to its respective data strobe signal (DQS, DQS#) crossing.
- 20. The setup and hold times are listed converting the base specification values (towhich derating tables apply) to VREF when the slew rate is 1 V/ns (DQs are at 2V/ns for DDR3-1866). These values, with a slew rate of 1 V/ns (DQs are at 2V/ns for DDR3-1866), are for reference only.
- 21. When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJITper (larger of tJITper (MIN) or tJITper (MAX) of the input clock (output deratings are relative to the SDRAM input clock).
- 22. Single-ended signal parameter.
- 23. The DRAM output timing is aligned to the nominal or average clock. Most output pa- rameters must be derated by the actual jitter error when input clock jitter is present, even when within specification. This results in each parameter becoming larger. The fol- lowing parameters are required to be derated by subtracting tERR10per (MAX): tDQSCK (MIN), tLZDQS (MIN), tLZDQ (MIN), and tAON (MIN). The following parameters are re- quired to be derated by subtracting tERR10per (MAX): tDQSCK (MIN), tLZDQS (MIN); tDQSCK (MAX), tHZ (MAX), tLZDQS (MAX), tLZDQ (MAX), and tAON (MAX). The parameter tRPRE (MIN) is derated by sub- tracting tJITper (MAX), while tRPRE (MAX) is derated by subtracting tJITper (MIN).
- 24. The maximum preamble is bound by tLZDQS (MAX).
- 25. These parameters are measured from a data strobe signal (DQS, DQS#) crossing to its re- spective clock signal (CK, CKB) crossing. The specification values are not affected by the amount of clock jitter applied, as these are relative to the clock signal crossing. These parameters should be met whether clock jitter is present.
- 26. The tDQSCK (DLL_DIS) parameter begins CL + AL 1 cycles after the READ command.
- 27. The maximum postamble is bound by tHZDQS (MAX).
- 28. Commands requiring a locked DLL are: READ (and RDAP) and synchronous ODT com- mands. In addition, after any change of latency tXPDLL, timing must be met.
- 29. tIS (base) and tIH (base) values are for a single-ended 1 V/ns control/command/address slew rate and 2 V/ns CK, CKB differential slew rate.
- 30. These parameters are measured from a command/address signal transition edge to its respective clock (CK, CKB) signal crossing. The specification values are not affected by the amount of clock jitter applied as the setup and hold

times are relative to the clock signal crossing that latches the command/address. These parameters should be met whether clock jitter is present.

- 31. For these parameters, the DDR3L SDRAM device supports tnPARAM (nCK) = RU(tPARAM [ns]/tCK[AVG] [ns]), assuming all input clock jitter specifications are satisfied. For exam- ple, the device will support tnRP (nCK) = RU(tRP/tCK[AVG]) if all input clock jitter specific cations are met. This means that for DDR3-800 6-6-6, of which tRP = 5ns, the device will support tnRP = RU(tRP/tCK[AVG]) = 6 as long as the input clock jitter specifications are met. That is, the PRECHARGE command at T0 and the ACTIVATE command at T0 + 6 are valid even if six clocks are less than 15ns due to input clock jitter.
- 32. During READs and WRITEs with auto precharge, the DDR3 SDRAM will hold off the in- ternal PRECHARGE command until tRAS (MIN) has been satisfied.
- 33. When operating in DLL disable mode, the greater of 5CK or 15ns is satisfied for tWR.
- 34. The start of the write recovery time is defined as follows: For BL8 (fixed by MRS or OTF): Rising clock edge four clock cycles after WL
 - a. For BC4 (OTF): Rising clock edge four clock cycles after WL
 - b. For BC4 (fixed by MRS): Rising clock edge two clock cycles afterWL
- 35. RESET# should be LOW as soon as power starts to ramp to ensure the outputs are in High-Z. Until RESET# is LOW, the outputs are at risk of driving and could result in exces- sive current, depending on busactivity.
- 36. The refresh period is 64ms when Tc is less than or equal to 85°C. This equates to an aver- age refresh rate of 7.8125µs. However, nine REFRESH commands should be asserted at least once every 70.3µs. When Tc is greater than 85°C, the refresh period is 32ms.
- 37. Although CKE is allowed to be registered LOW after a REFRESH command when tREFPDEN (MIN) is satisfied, there are cases where additional time such as tXPDLL (MIN) is required.
- 38. ODT turn-on time MIN is when the device leaves High-Z and ODT resistance begins to turn on. ODT turn-on time maximum is when the ODT resistance is fully on. The ODT reference load is shown. This output load is used for ODT timings.Designs that were created prior to JEDEC tightening the maxi- mum limit from 9ns to 8.5ns will be allowed to have a 9nsmaximum.
- 39. Half-clock output parameters must be derated by the actual tERR10per and tJITdtywhen input clock jitter is present. This results in each parameter becoming larger. Theparame- ters tADC (MIN) and tAOF (MIN) are each required to be derated by subtracting both tERR10per (MAX) and tJITdty (MAX). The parameters tADC (MAX) and tAOF (MAX) are required to be derated by subtracting both tERR10per (MAX) and tJITdty (MAX).
- 40. ODT turn-off time minimum is when the device starts to turn off ODT resistance. ODT turn- off time maximum is when the DRAM buffer is in High-Z. The ODT reference load is shown. This output load is used for ODT timings.
- 41. Pulse width of a input signal is defined as the width between the first crossing of VREF(DC) and the consecutive crossing of VREF(DC).
- 42. Should the clock rate be larger than tRFC (MIN), an AUTO REFRESH command should have at least one NOP command between it and another AUTO REFRESH command. Ad- ditionally, if the clock rate is slower than 40ns (25 MHz), all REFRESH commands should be followed by a PRECHARGE ALL command.
- 43. DRAM devices should be evenly addressed when being accessed. Disproportionate ac- cesses to a particular row address may result in a reduction of REFRESH characteristics or product lifetime.
- 44. When two VIH(AC) values (and two corresponding VIL(AC) values) are listed for a specific speed bin, the user may choose either value for the input AC level. Whichever value is used, the associated setup time for that AC level

must also be used. Additionally, one $V_{IH(AC)}$ value may be used for address/command inputs and the other $V_{IH(AC)}$ value may be used for data inputs.


For example, for DDR3-800, two input AC levels are defined: VIH(AC175),min and VIH(AC150),min (corresponding VIL(AC175),min and VIL(AC150),min). For DDR3-800, the address/ command inputs must use either VIH(AC175),min with tlS(AC175) of 200ps or VIH(AC150),min with tlS(AC150) of 350ps; independently, the data inputs must use either VIH(AC175),min with tDS(AC175) of 75ps or VIH(AC150),min with tDS(AC150) of 125ps.

8 Package Outlines

Figure 3 reflects the current status of the outline dimensions of the DDR3L packages for 2Gbit components x8 configuration.

Figure 3 - Package outline

9 Product Type Nomenclature

For reference the UniIC SDRAM component nomenclature is enclosed in this chapter

Table 7 - DDR4 Memory Components

Field	Description	Values	Coding
1	UniIC Component Prefix	SCB	UniIC
2	Voltage	13	VDD, VDDQ=1.14V-1.26V
3	DRAM Technology	н	DDR3
4	Density	2G	42Gbit
5	Number of I/Os	80	x8
6	Product Variant	09	-
7	Die Revision	А	First
		В	Second
		С	Third
8	Package,	F	FBGA
9	Power	-	Standard power product
		L	Low power product
10	Speed Grade	11M	CL-tRCD-tRP = 13-13-13
		13K	CL-tRCD-tRP = 11-11-11

List of Figures

Figure 1 - Ball out for 256 Mb ×8 Components (FBGA-78)	6
Figure 2 - Reference Load for AC Timings and Output Slew Rates	. 12
Figure 3 - Package outline	. 27

List of Tables

Table 1 - Ordering Information for 2Gbit DDR3L Component	5
Table 2 - Input / Output Signal Functional Description	7
Table 3 - IDD & IDDQ Specification	9
Table 4 - DDR3-1600 Speed Bins	10
Table 5 - DDR3-1866 Speed Bins	11
Table 6 - AC Timing parameters	13
Table 7 - DDR4 Memory Components	28

Edition 2018-11 Published by Xi'an UniIC Semiconductors CO., Ltd.

Xi'an: 4th Floor, Building A, No. 38 Gaoxin 6th Road, Xian High-tech Industries Development Zone Xi'an, Shanxi 710075, P. R. China Tel: +86-29-88318000 Fax: +86-29-88453299

info@unisemicon.com

© UniIC 2018. All Rights Reserved.

Legal Disclaimer

THE INFORMATION GIVEN IN THIS INTERNET DATA SHEET SHALL IN NO EVENT BE REGARDED AS A GUARANTEE OF CONDITIONS OR CHARACTERISTICS. WITH RESPECT TO ANY EXAMPLES OR HINTS GIVEN HEREIN, ANY TYPICAL VALUES STATED HEREIN AND/OR ANY INFORMATION REGARDING THE APPLICATION OF THE DEVICE, UNIIC HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND, INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest UniIC Office.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest UniIC Office.

UniIC Components may only be used in life-support devices or systems with the express written approval of UniIC, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

www.unisemicon.com